Skip to main content
Log in

Experimental Study of Interaction of Carbonic Fluid with Cumulus Minerals of Ultrabasic Intrusions at 950°C and 200 MPa

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

At the stage of magmatic crystallization, magmas of basic–ultrabasic intrusions of subduction origin and alkaline-ultrabasic intrusions have high oxygen fugacity, which prevents large-scale sulfide formation. Correspondingly, PGE in such intrusions are dispersed among cumulus minerals rather than accumulated in sulfides. It has been shown experimentally that the subsolidus interaction (P = 200 MPa, T = 950°C) of CO2 with olivine, a typical cumulus mineral of basic–ultrabasic intrusions, leads to the oxidation of the fayalitic component and reduction of a fluid. At a low silica activity in the fluid, the content of CO in CO2 reaches a maximum value of 14 mol %, which corresponds to fO2 = QFM–2. With such a CO content, platinum from the capsule walls was dissolved in the fluid in the form of carbonyl and reprecipitated with spinel in olivine cracks. It has been experimentally established that the interaction of CO2–H2O fluid with pyrrhotite under the same P-T conditions is accompanied by the reduction of the fluid with a decrease in oxygen fugacity to QFM buffer. Analysis of the composition of fluid captured in an albite glass trap by micro-Raman scattering showed the formation of saturated (С2Н6 and СН4) and unsaturated (with functional groups СН=СН and =СН2) hydrocarbons, CO, H2 and H2S. The platinum of the capsule walls has buffered the sulfur fugacity at a low level of Pt–PtS buffer, resulting in the low content of sulfur species in the fluid and dissolution of Pt in carbonyl form. Crystallization of the isoferroplatinum from such a fluid was observed experimentally. Preliminary data indicate that the CO-bearing carbonic fluid extracts Cr from the Cr-spinel, which increases the range of the Cr/(Al + Cr) ratio with constant Fe3+/(Al + Cr) at the spinel surface. All established experimental effects of fluid interaction with cumulus minerals of the basic–ultrabasic intrusions have been found in nature. This supports the inferred important role of such interaction in the formation of the low-sulfide PGE deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Barnes, S.-J., Maier, W.D., and Curl, W.A., Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits, Econ. Geol., 2010, vol. 105, pp. 1491–1511.

    Article  Google Scholar 

  2. Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., et al., Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite–dunite plutonic complex, Koryak highland (Far East Russia), J. Petrol., 2005, vol. 46, no. 7, pp. 1345–1366.

    Article  Google Scholar 

  3. Belzile, N., Chen, Y.-W., Cai, M.-F., and Li, Y., A review on pyrrhotite oxidation, J. Geochem. Explor., 2004, vol. 84, no. 92, pp. 65–76.

    Article  Google Scholar 

  4. Bergman, S.C. and Dubessy, J., CO2–CO fluid inclusions in a composite peridotite xenolith: implications for upper mantle oxygen fugacity, Contrib. Mineral. Petrol., 1984, vol. 85, pp. 1–13.

    Article  Google Scholar 

  5. Boudreau, A.E., Palladium, a program to model the chromatographic separation of the platinum-group elements, base metals and sulfur in a solidifying pile of igneous crystals, Can. Mineral., 2004, vol. 42, no. 32, pp. 393–403.

    Article  Google Scholar 

  6. Burke, E.A.J., Raman microspectrometry of fluid inclusions, Lithos, 2001, vol. 55, nos. 1–4, pp. 139–158.

    Article  Google Scholar 

  7. Carmichael, Ian S.E., The redox states of basic and silicic magmas: a reflection of their source regions?, Contrib. Mineral. Petrol., 1991, vol. 106, pp. 129–141.

    Article  Google Scholar 

  8. Dohmen, R. and Chakraborty, S., Fe-Mg diffusion in olivine. II: Point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine, Phys. Chem. Mineral., 2007, vol. 34, no. 6, pp. 409–430.

    Article  Google Scholar 

  9. Dyar, M.D., McGuire, A.V., and Harrell, M.D., Crystal chemistry of iron in two styles of metasomatism in the upper mantle, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 6, pp. 2579–2586.

    Article  Google Scholar 

  10. Galimov, E.M., Kaminsky, F.V., Shilobreeva, S.N., et al., Enigmatic diamonds from the Tolbachik Volcano, Kamchatka, Am. Mineral., 2020, vol. 105, no. 4, pp. 498–509.

    Article  Google Scholar 

  11. Harris, C., Pronost, J.J.M., Ashwal, L.D., and Cawthorn, R.G., Oxygen and hydrogen isotope stratigraphy of the Rustenburg Layered Suite, Bushveld Complex: constraints on crustal contamination, J. Petrol., 2005, vol. 46, no. 3, pp. 579–601.

    Article  Google Scholar 

  12. Ishimaru, S., Arai, S., Ishida, Y., Shirasaka, M., et al., Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha Volcano, southern Kamchatka, J. Petrol., 2007, vol. 48, no. 2, pp. 395–433.

    Article  Google Scholar 

  13. Ishimaru, S., Arai, S., and Shukuno, H., Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha Volcano, Kamchatka, Earth Planet. Sci. Lett., 2009, vol. 284, nos. 3–4, pp. 352–360.

    Article  Google Scholar 

  14. Jaoul, O., Michaut, M., Gueguen, Y., and Ricoult, D., Decorated dislocations in forsterite, Phys. Chem. Mineral., 1979, vol. 5, pp. 15–19.

    Article  Google Scholar 

  15. Jolayemi, O.O., Robb, L., Lenhardt, N., and Hughes, H.S.R., Different melt source regions for the volcanics of the bushveld large igneous province: new observations from melts modeling of the Palaeoproterozoic Rooiberg Group (South Africa), J. Afr. Earth Sci., 2020, vol. 172, p. 103999.

    Article  Google Scholar 

  16. Kanitpanyacharoen, W. and Boudreau, A.E., Sulfide-associated mineral assemblages in the Bushveld Complex, South Africa: platinum-group element enrichment by vapor refining by chloride-carbonate fluids, Miner. Deposita, 2013, vol. 48, pp. 193–210.

    Article  Google Scholar 

  17. Kislov, E.V., Ioko-Dovyrenskii rassloennyi massiv (Yoko–Dovyren Layered Massif), Ulan-Ude: BNTs SO RAN, 1998.

  18. Knafelc, J., Filiberto, J., Ferre, E.C., et al., The effect of oxidation on the mineralogy and magnetic properties of olivine, Am. Mineral., 2019, vol. 104, no. 5, pp. 694–702.

    Article  Google Scholar 

  19. Kohlstedt, D.L. and Vander Sande J.B., An electron microscopy study of naturally occurring oxidation produced precipitates in iron-bearing olivines, Contrib. Mineral. Petrol., 1975, vol. 53, pp. 13–24.

    Article  Google Scholar 

  20. Konnikov, E.G., Meurer, W.P., Neruchev, S.S., et al., Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic–ultramafic layered complex, eastern Siberia, Russia, Miner. Deposita, 2000, vol. 35, pp. 526–532.

    Article  Google Scholar 

  21. Maier, W.D., Prevec, S.A., Scoates, J.S., et al., The Uitkomst intrusion and Nkomati Ni–Cu–Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology, Miner. Deposita, 2018, vol. 53, no. 1, pp. 67–88.

    Article  Google Scholar 

  22. Massalski, T.B., Binary Alloy Phase Diagrams, Osolo: ASM International, 1990.

  23. Miller, M.S., Receiver Function Images of the Western US Lithosphere Using Transportable Array Data, 2009. Retrieved from http://www.earthscope.org/es_doc/onsite/Su09_WUSRecFunc.pdf.

  24. Mochalov, A.G., A genetic model of PGM hosted in cumulative gabbro–pyroxenite–dunite complexes of the Koryak Highland, Russia, Geol. Ore Deposits, 2013, vol. 55, no. 3, pp. 145–161.

    Article  Google Scholar 

  25. Nazimova, Y.V., Zaytsev, V.P., and Petrov, S.V., The Galmoenan massif, Kamchatka, Russia: geology, PGE mineralization, applied mineralogy and beneficiation, Can. Mineral., 2011, vol. 49, pp. 1433–1453.

    Article  Google Scholar 

  26. Pan, P. and Wood, S.A., Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions II. Results at ~200 to ~350 and saturated vapor pressure, Miner. Deposita, 1994, vol. 29, pp. 373–390.

    Article  Google Scholar 

  27. Pokrovski, G.S., Borisova, A.Y., and Harrichoury, J.C., The effect of sulfur on vapor-liquid fractionation of metals in hydrothermal systems, Earth Planet. Sci. Lett., 2008, vol. 266, pp. 345–362.

    Article  Google Scholar 

  28. Putirka, K.D., Igneous thermometers and barometers based on plagioclase + liquid equilibria: òests of some existing models and new calibrations, Am. Mineral., 2005, vol. 90, nos. 2–3, pp. 336–346.

    Article  Google Scholar 

  29. Sassani, D.C. and Shock, E.L., Solubility and transport of platinum-group elements in supercritical fluids: summary and estimates of thermodynamic properties for ruthenium, rhodium, palladium, and platinum solids, aqueous ions, and complexes to 1000°C and 5 kbar, Geochim. Cosmochim. Acta, 1998, vol. 62, no. 15, pp. 2643–2671.

    Article  Google Scholar 

  30. Schwarzenbach, E.M., Gazel, E., and Caddick, M.J., Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages, Contrib. Mineral. Petrol., 2014, vol. 168, p. 1079.

    Article  Google Scholar 

  31. Sidorov, E.G., Osipenko, A.B, Kozlov, A.P., and Kostoyanov, A.I., Chromite mineralization in rocks of the Galmoenan mafic–ultramafic complex, Koryakiya (Russia), Geol. Ore Deposits, 2004, vol. 46, no. 3, pp. 202–217.

    Google Scholar 

  32. Simakin, A.G., Poroelastic response to rapid decarbonatisation as a mechanism of the diamonds formation in the mantle wedge of Kamchatka, Russ. J. Earth Sci., 2019, vol. 19, no. 5, pp. 1–13.

    Article  Google Scholar 

  33. Simakin, A.G. and Shaposhnikova, O.Yu., Novel amphibole geobarometer for high-magnesium andesite and basalt magmas, Petrology, 2017, vol. 25, no. 2, pp. 226–240.

    Article  Google Scholar 

  34. Simakin, A.G., Salova, T.P., and Bondarenko, G.V., Experimental study of magmatic melt oxidation by CO2, Petrology, 2012, vol. 20, no. 7, pp. 593–606.

    Article  Google Scholar 

  35. Simakin, A.G., Salova, T.P., Gabitov, R.I., and Isaenko, S.I., Dry CO2–CO fluid as an important potential deep Earth solvent, Geofluids, 2016, vol. 16, pp. 1043–1057.

    Article  Google Scholar 

  36. Simakin, A.G., Kislov, E.V., Salova, T.P., et al., Reduced CO2 fluid as an agent of ore-forming processes: a case study of dolomite-replacement skarns at the Yoko–Dovyren massif, Petrology, 2019a, vol. 27, no. 1, pp. 1–16.

    Article  Google Scholar 

  37. Simakin, A.G., Devyatova, V.N., Salova, T.P., and Shaposhnikova, O.Yu., Experimental study of amphibole crystallization from the highly magnesian melt of Shiveluch Volcano, Kamchatka, Petrology, 2019b, vol. 27, no. 5, pp. 442–459.

    Article  Google Scholar 

  38. Simakin, A., Salova, T., Borisova, A.Y., et al., Experimental study of Pt solubility in the CO–CO2 fluid at low fO2 and subsolidus conditions of the ultramafic-mafic intrusions, Minerals, 2021, vol. 11, no. 2, 225. https://doi.org/10.3390/min11020225

    Article  Google Scholar 

  39. Sluzhenikin, S.F., Yudovskaya, M.A., Barnes, S.J., et al., Low-sulfide platinum group element ores of the Norilsk–Talnakh camp, Econ. Geol., 2020, vol. 115, no. 6, pp. 1267–1303.

    Article  Google Scholar 

  40. Wansbury, N.T., Mineral Chemistry of Merensky Reef Chromitite Layers in the Marikana District, University of the Witwatersrand, Faculty of Science, School of Geology, 2016.

    Google Scholar 

  41. Xiong, F., Zoheir, B., Robinson, P.T., et al., Genesis of the Ray-Iz chromitite, Polar Urals: inferences to mantle conditions and recycling processes, Lithos, 2020, vol. 374–375, p. 105699.

    Article  Google Scholar 

  42. Yang, J., Meng, F., Xu, X., Robinson, P.T., et al., Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals, Gondwana Res., 2015, vol. 27, pp. 459–485.

    Article  Google Scholar 

  43. Yudovskaya, M., Kinnaird, J., Naldrett, A.J., et al., Trace-element study and age dating of zircon from chromitites of the Bushveld Complex (South Africa), Mineral. Petrol., 2013, vol. 107, no. 6, pp. 915–942.

    Article  Google Scholar 

  44. Yudovskaya, M.A., Naldrett, A.J., Woolfe, J.A.S., et al., Reverse compositional zoning in the Uitkomst chromitites as an indication of crystallization in a magmatic conduit, J. Petrol., 2016, vol. 56, no. 12, pp. 2373–2394.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to T.N. Koval’skaya (IEM RAS) for kindly given chrome-spinel and pyrrhotite crystals. V.O. Osadchii (IME RAS) is thanked for synthetic troilite. V.N. Devyatova drew our attention to the early researches by Carmichael (1991), which allowed us to reproduce a historical continuity of our studies. The critical comments by A.A. Ariskin and E.V. Kislov allowed us to revise the possible relation of experimental observations with geological data on the low-sulfide PGE magmatic deposits.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-05-00597).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Simakin or T. P. Salova.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simakin, A.G., Salova, T.P., Shaposhnikova, O.Y. et al. Experimental Study of Interaction of Carbonic Fluid with Cumulus Minerals of Ultrabasic Intrusions at 950°C and 200 MPa. Petrology 29, 371–385 (2021). https://doi.org/10.1134/S0869591121040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121040068

Keywords:

Navigation