Skip to main content
Log in

Origin of submarine volcanism at the eastern margin of the central atlantic: Investigation of the alkaline volcanic rocks of the carter seamount (Grimaldi Seamounts)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper addresses the composition, geochemistry, isotopic characteristics, and age of rocks from the Carter Seamount of the Grimaldi seamount group at the eastern margin of the Central Atlantic. The age of the seamount was estimated as 57–58 Ma. Together with other seamounts of the Grimaldi system and the Nadir Seamount, it forms a “hot line” related to the Guinea Fracture Zone, which was formed during the late Paleocene pulse of volcanism. The Carter Seamount is made up of olivine melilitites, ankaramites, and analcime-bearing nepheline tephrites, which are differentiated products of the fractional crystallization of melts similar to an alkaline ultramafic magma. The volcanics contain xenoliths entrained by melt at different depths from the mantle, layer 3 of the oceanic crust, which was formed at 113–115 Ma, and earlier magma chambers. The rocks were altered by low-temperature hydrothermal solutions. The parental melts of the volcanics of the Carter Seamount were derived at very low degrees of mantle melting in the stability field of garnet lherzolite at depths of no less than 105 km. Anomalously high Th, Nb, Ta, and La contents in the volcanics indicate that a metasomatized mantle reservoir contributed to the formation of their primary melts. The Sr, Pb, and Nd isotopic systematics of the rocks show that the composition of the mantle source lies on the mixing line between two mantle components. One of them is a mixture of prevailing HIMU and the depleted mantle, and the other is an enriched EM2-type mantle reservoir. These data suggest that the formation of the Carter Seamount volcanics was caused by extension-related decompression melting in the Guinea Fracture Zone of either (1) hot mantle plume material (HIMU component) affected by carbonate metasomatism or (2) carbonated basic enclaves (eclogites) ubiquitous in the asthenosphere, whose isotopic characteristics corresponded to the HIMU and EM2 components. In the former case, it is assumed that the melt assimilated during ascent the material of the metasomatized subcontinental mantle (EM2 component), which was incorporated into the oceanic lithospheric mantle during rifting and the breakup of Pangea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battey, M.H. and Pring, A., Mineralogy for Students, London: Longman, 1997.

    Google Scholar 

  • Bertrand, H., Feraud, G., and Mascle, J., Alkaline Volcano of Paleocene Age on the Southern Guinean Margin: Mapping, Petrology, 40Ar/39Ar Laser Probe Dating, and Applications for the Evolution for the Eastern Equatorial Atlantic, Mar. Geol., 1993, vol. 114, nos. 3/4, pp. 261–262.

    Google Scholar 

  • Bonadiman, C., Beccaluva, L., Coltorti, M., and Siena, F., Kimberlite-Like Metasomatism and “Garnet Signature” in Spinel-Peridotite Xenoliths from Sal, Cape Verde Archipelago: Relics of a Subcontinental Mantle Domain within the Atlantic Oceanic Lithosphere?, J. Petrol., 2005, vol. 46, no. 12, pp. 2465–2493.

    Article  Google Scholar 

  • Bortnikov, N.S., Sharkov, E.V., Bogatikov, O.A., et al., Finds of Young and Ancient Zircons in Gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°30.6′–5°32.4′N (Results of SHRIMP-II U-Pb Dating): Implication for Deep Geodynamics of Modern Oceans, Dokl. Earth Sci., 2008, vol. 421, no. 2, pp. 859–866.

    Article  Google Scholar 

  • Brey, G.P., Bulatov, V.K., Girnis, A.V., and Lahaye, Y., Experimental Melting of Carbonated Peridotite at 6–10 GPa, J. Petrol., 2008, vol. 49, pp. 797–821.

    Article  Google Scholar 

  • Chernysheva, E.A. and Belozerova, O.Yu., Composition of Mantle Xenoliths from Melilitites and Evolution of Primary Alkaline Melt in the Nizhnesayanskii Carbonatite Complex, Geochem. Int. (Engl. Transl.), 2000, vol. 38, pp. 713–716.

    Google Scholar 

  • Chernysheva, E.A. and Kostrovitskii, S.I., Olivine Melilitites of the Kimberlite and Carbonatite Associations in Dikes and Diatremes of Eastern Siberia, Geochem. Int., 1998, vol. 36, pp. 1100–1108.

    Google Scholar 

  • Chernysheva, E.A., Belozerova, O.Yu., and Kostrovitskii, S.I., Cr-Spinellids from Olivine Melilitites of the Carbonatite Formation, Dokl. Earth Sci., 1999, vol. 365, pp. 260–263.

    Google Scholar 

  • Cohen, R.S. and O’Nions, R.K., Identification of Recycled Continental Material in the Mantle from Sr, Nd and Pb Isotope Investigations, Earth Planet. Sci. Lett., 1982, vol. 61, pp. 73–84.

    Article  Google Scholar 

  • Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P., Atlas of Zircon Textures, Rev. Mineral. Geochem, 2003, vol. 53, pp. 468–500.

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M.M., and Stalker, K., Immiscible Transition from Carbonate-Rich to Silicate-Rich Melts in the 3 GPa Melting Interval of Ecologite + CO2 and Genesis of Silica-Undersaturated Ocean Island Lavas, J. Petrol., 2006, vol. 47, pp. 647–671.

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M.M., and Smith, N.D., Partial Melting Experiments of Peridotite + CO2 and Genesis of Alkalic Ocean Island Basalts, J. Petrol., 2007, vol. 48, pp. 2093–2124.

    Article  Google Scholar 

  • Davidson, J. and Bohrson, W.A., Shallow-Level Processes in Ocean-Island Magmatism: Editorial, J. Petrol., 1998, vol. 39, pp. 799–801.

    Article  Google Scholar 

  • Doucelance, R., Escrig, S., Moreira, M., et al., Pb-Sr-He and Trace Element Geochemistry of the Cape Verde Archipelago, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 3717–3733.

    Article  Google Scholar 

  • Eiler, J.M., Schiano, J.M., Kitchen, N., and Stolper, E.M., Oxygen-Isotope Evidence for Recycled Crust in the Sources of Mid-Ocean-Ridge Basalts, Nature, 2000, vol. 403, pp. 530–534.

    Article  Google Scholar 

  • Ellam, R.M., Lithospheric Thickness as a Control on Basalt Geochemistry, Geology, 1992, vol. 20, pp. 153–156.

    Article  Google Scholar 

  • Feraud, G., York, D., Mevel, C., Cornen, G., et al., Additional 40Ar/39Ar Dating of the Basement and Alkaline Volcanism of Gorringe Bank (Atlantic Ocean), Earth Planet. Sci. Lett., 1986, vol. 79, pp. 255–269.

    Article  Google Scholar 

  • Fraser, K.J., Hawkesworth, C.J., Erlank, A.J., et al., Sr, Nd and Pb Isotope and Minor Element Geochemistry of Lamproites and Kimberlites, Earth Planet. Sci. Lett., 1985, vol. 76, pp. 57–70.

    Article  Google Scholar 

  • General Bathymetric Chart of the Oceans (GEBCO), Ottawa: Canad. Hydrogr. Serv., 2004.

  • Gerbode, C. and Dasgupta, R., Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2.9 GPa and Genesis of HIMU Ocean Island Basalts, J. Petrol., 2010, vol. 51, no. 10, pp. 2067–2088.

    Article  Google Scholar 

  • Gerlach, D.C., Cliff, R.A., Davies, G.R., et al., Magma Sources of the Cape Verde Archipelago: Isotopic and Trace Elements Constraints, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 2979–2992.

    Article  Google Scholar 

  • Gibson, S.A., Thompson, R.N., Leonardos, O.H., et al., The Limited Extent of Plume-Lithosphere Interactions during Continental Flood-Basalt Genesis: Geochemical Evidence from Cretaceous Magmatism in Southern Brazil, Contrib. Mineral. Petrol., 1999, vol. 137, pp. 147–169.

    Article  Google Scholar 

  • Gudfinnsson, G. and Presnall, D.C., Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa, J. Petrol., 2005, vol. 46, pp. 1645–1659.

    Article  Google Scholar 

  • Hart, S.R., A Large Scale Isotope Anomaly in the Southern Hemisphere Mantle, Nature, 1984, vol. 309, pp. 753–757.

    Article  Google Scholar 

  • Hart, S.R., Heterogeneous Mantle Domains: Signatures, Genesis and Mixing Chronology, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 273–296.

    Article  Google Scholar 

  • Hawkesworth, C.J., Kempton, P.D., Rogers, R.M., et al., Continental Mantle Lithosphere and Shallow Level Enrichments Processes in the Earth’s Mantle, Earth Planet. Sci. Lett., 1990, vol. 96, pp. 256–268.

    Article  Google Scholar 

  • Hayes, D.E. and Rabinowitz, P.D., Mesozoic Magnetic Lineations and the Magnetic Quiet Zone of Northwest Africa, Earth Planet. Sci. Lett., 1975, vol. 28, pp. 105–115.

    Article  Google Scholar 

  • Hekinian, R., Bonte, P., Dudley, W., et al., Volcanics from the Sierra Leone Rise, Nature, 1978, vol. 275, pp. 536–538.

    Article  Google Scholar 

  • Heller, D. and Marquart, G., An Admittance Study of the Reykjanes Ridge and Elevated Plateaux between the Charlie Gibbs and Senja Fracture Zones, Geophys. J. Int., 2002, vol. 148, pp. 65–76.

    Article  Google Scholar 

  • Hill, R. and Roeder, P., The Crystallization of Spinel from Basaltic Liquid as a Function of Oxygen Fugacity, J. Geol., 1974, vol. 82, pp. 709–729.

    Article  Google Scholar 

  • Hirose, K., Partial Melt Compositions of Carbonated Peridotite at 3 GPa and Role of CO2 in Alkali-Basalt Magma Generation, Geoph. Res. Let, 1997, vol. 24, pp. 2837–2840.

    Article  Google Scholar 

  • Hirschmann, M.M. and Stolper, E.M., A Possible Role for Garnet Pyroxenite in the Origin of the “Garnet Signature” in MORB, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 185–208.

    Article  Google Scholar 

  • Hoernle, K., Tilton, G., and Schminke, H-U., Sr-Nd-Pb Isotopic Evolution of Gran Canaria: Evidence for Shallow Enriched Mantle beneath the Canary Islands, Earth Planet. Sci. Lett., 1991, vol. 106, pp. 44–64.

    Article  Google Scholar 

  • Hoernle, K., Zhang, Y., and Graham, D., Seismic and Geochemical Evidence for Large-Scale Mantle Upwelling beneath the Eastern Atlantic and Western and Central Europe, Nature, 1995, vol. 374, pp. 34–39.

    Article  Google Scholar 

  • Hofmann, A.W., Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust and Ocean Crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 297–314.

    Article  Google Scholar 

  • Hofmann, A.W., Mantle Geochemistry: the Message from Oceanic Volcanism, Nature, 1997, vol. 385, pp. 219–229.

    Article  Google Scholar 

  • Hofmann, A.W. and White, W.M., Mantle Plumes from Ancient Oceanic Crust, Earth Planet. Sci. Lett., 1982, vol. 57, pp. 421–436.

    Article  Google Scholar 

  • Holm, P.M., Christensen, B.P., Hansen, L., et al., Sampling the Cape Verde Mantle Plume: Evolution of Melt Compositions on Santo Antao, Cape Verde Islands, J. Petrol., 2006, vol. 47, no. 1, pp. 145–189.

    Article  Google Scholar 

  • Hoskin, P.W.O. and Schaltegger, U., The Composition of Zircon and Igneous and Metamorphic Petrogenesis, Rev. Mineral. Geochem., 2003, vol. 53, pp. 27–62.

    Article  Google Scholar 

  • Huang, S. and Frey, F., Recycled Oceanic Crust in the Hawaiian Plume: Evidence from Temporal Geochemical Variations within the Koolau Shield, Contrib. Mineral. Petrol., 2005, vol. 149, pp. 556–575.

    Article  Google Scholar 

  • Ito, E., White, W.M., and Gopel, C., The O, Sr, Nd and Pb Isotope Geochemistry of MORB, Chem. Geol., 1987, vol. 62, pp. 157–176.

    Article  Google Scholar 

  • Jackson, M.G. and Dasgupta, R., Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts, Earth Planet. Sci. Lett., 2008, vol. 276, pp. 175–186.

    Article  Google Scholar 

  • Janney, P.E., Le Roex A.P., Carlson R.W., Viljoen K.S. A Chemical and Multi-Isotope Study of the Western Cape Olivine Melilitite Province, South Africa: Implications for the Sources of Kimberlites and the Origin of the HIMU Signature in Africa, J. Petrol., 2002, vol. 43, no. 12, pp. 2339–2370.

    Article  Google Scholar 

  • Jones, E.J.W., Fracture Zones in the Equatorial Atlantic and the Breakup of Western Pangea, Geology, 1987, vol. 15, pp. 533–536.

    Article  Google Scholar 

  • Jones, E.J.W., Goddard, D.A., Mitchell, J.G., and Banner, F.T., Lamprophyric Volcanism of Cenozoic Age on the Sierra-Leone Rise: Implication for Regional Tectonics and the Stratigraphic Time Scale, Mar. Geology, 1991, vol. 99, pp. 19–28.

    Article  Google Scholar 

  • Kashintsev, G.L., Glubinnye porody okeanov (Deep Oceanic Rocks), Moscow: Nauka, 1991.

    Google Scholar 

  • Kharin, G.S., Magmatic Rocks of the Submarine Sierra Leone Rise, Okeanologiya, 1988, vol. 28, no. 1, pp. 82–88.

    Google Scholar 

  • Kokfelt, T.F., Holm, P.M., Hawkesworth, C.J., and Peate, D.W., A Lithospheric Mantle Source for the Cape Verde Island Magmatism: Trace Element and Isotopic Evidence from the Island Fogo, Mineral. Mag., 1998, vol. 62A, pp. 801–820.

    Article  Google Scholar 

  • Kumar, N. and Embley, R.W., Evolution and Origin of Ceara Rise: An Aseismic Rise in the Western Equatorial Atlantic, Geol. Soc. Am. Bull., 1977, vol. 88, pp. 683–694.

    Article  Google Scholar 

  • Lancelot, Y., Seibold, E., Cepek, P., et al., Site 366: Cape Verde Basin, Init. Rept. DSDP, 41, 21–162 (1978).

    Google Scholar 

  • Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names, Eur. J. Mineral., 1997, vol. 9, pp. 623–651.

    Google Scholar 

  • Loubet, M., Sassi, R., and Donato, R., Mantle Heterogeneities: A Combined Isotope and Trace Element Approach and Evidence for Recycled Continental Crust Materials in Some OIB Sources, Earth Planet. Sci. Lett., 1988, vol. 89, pp. 299–315.

    Article  Google Scholar 

  • Lundstrom, C.C., Gill, J., and Williams, Q., A Geochemically Consistent Hypothesis for MORB Generation, Chem. Geol., 2000, vol. 162, pp. 105–126.

    Article  Google Scholar 

  • Magmaticheskie gornye porody (Igneous Rocks), Bogatikov, O.A., Ed., Moscow: Nauka, 1983.

    Google Scholar 

  • Marques, L.S., Mabel, N.C., Ulbrich, E.R., and Colombo, G.T., Petrology, Geochemistry and Sr-Nd Isotopes of the Trindade and Martin Vaz Volcanic Rocks Southern Atlantic Ocean, J. Volcanol. Geoth. Res., 1999, vol. 93, pp. 191–216.

    Article  Google Scholar 

  • Mazarovich, A.O., The Structure and History of the Volcanic Islands and Seamounts of the Tropical Atlantic, Geotectonics 1998, vol. 32, pp. 296–307].

    Google Scholar 

  • Mazarovich, A.O., Geologicheskoe stroenie Tsentral’noi Atlantiki: razlomy, vulkanicheskie sooruzheniya i deformatsii okeanskogo dna (Geological Structure of the Central Atlantic: Faults, Volcanic Edifices, and Deformations of the Ocean Floor), Moscow: Nauchnyi Mir, 2000.

    Google Scholar 

  • Mazarovich, A.O., Frikh-Khar, D.I., Kogarko, L.N., et al., Tektonika i magmatizm ostrovov Zelenogo Mysa (Tectonics and Magmatism of the Cape Verde Islands), Moscow: Nauka, 1990.

    Google Scholar 

  • McKenzie, D. and O’Nions, R.K., Mantle Reservoirs and Ocean Island Basalts, Nature, 1983, vol. 393, pp. 229–231.

    Article  Google Scholar 

  • Morgan, W.J., Hotspot Tracks and the Opening of the Atlantic and Indian Ocean, in The Sea, Emiliani, C.,. Ed., New York: Wiley-Chichester, 1981, vol. 7, pp. 443–487.

    Google Scholar 

  • Morimoto, N., Fabries, J., and Ferguson, A.K., Nomenclature of Pyroxenes, Am. Mineral., 1988, vol. 73, nos. 9–10, pp. 1123–1134.

    Google Scholar 

  • Niu, Y. and Batiza, R., Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle, Earth Planet. Sci. Lett., 1997, vol. 148, pp. 471–483.

    Article  Google Scholar 

  • Niu, Y. and O’Hara, M.J., Origin of Ocean Island Basalts: A New Perspective from Petrology, Geochemistry, and Mineral Physics Consideration, J. Geophys. Res., 2003, vol. 108, pp. 2002–2048.

    Article  Google Scholar 

  • Panaev, V.A. and Mitulov, S.N., Seismostratigrafiya osadochnogo chekhla Atlanticheskogo okeana (Sesimostratigraphy of the Sedimentary Cover of the Atlantic Ocean), Moscow: Nedra, 1993.

    Google Scholar 

  • Peyve, A.A. and Skolotnev, S.G., Alkali Volcanism of the Bathymetrists Seamounts Chain (Central Atlantic): Characteristics and Comparison, Dokl. Earth Sci., 2009, vol. 425, no. 1, pp. 243–248.

    Article  Google Scholar 

  • Pilet, S., Baker, M.B., and Stolper, E.M., Metasomatized Lithosphere and the Origin of Alkaline Lavas, Science, 2008, vol. 320, pp. 916–919.

    Article  Google Scholar 

  • Pilot, J., Werner, C.D., Haubrich, F., and Baumann, N., Paleozoic and Proterozoic Zircons from the Mid-Atlantic Ridge, Nature, 1998, vol. 393, pp. 676–679.

    Article  Google Scholar 

  • Pushcharovskii, Yu.M., Skolotnev, S.G., Peyve, A.A., et al., Geologiya i metallogeniya Sredinno-Atlanticheskogo khrebta, 5–7s.sh (Geology and Metallogeny of the Mid-Atlantic Ridge, 5-7°N), Moscow: GEOS, 2004.

    Google Scholar 

  • Putirka, K., Melting Depths and Mantle Heterogeneity beneath Hawaii and the East Pacific Rise: Constraints from Na/Ti and Rare Earth Element Ratios, J. Geophys. Res., 1999, vol. 104, pp. 2817–2829.

    Article  Google Scholar 

  • Ritsema, J., Ni, S., Helmberger, D.V., and Crotwell, H.P., Evidence for Strong Shear Velocity Reductions and Velocity Gradients in the Lower Mantle beneath Africa, Geophys. Res. Lett., 1998, vol. 25, pp. 4245–4248.

    Article  Google Scholar 

  • Sandwell, D.T. and Smith, W.H.F., Marine Gravity Anomaly from Geosat and ERS-1 Satellite Altimetry, J. Geophys. Res., 1997, vol. 102, pp. 10039–10054.

    Article  Google Scholar 

  • Schilling, J.G., Hanan, B.B., MacCully B., et al. Influence of the Sierra Leone Mantle Plume on the Equatorial Mid-Atlantic Ridge: Nd-Sr-Pb Isotopic Study, J. Geophys. Res., 1994, vol. 99, pp. 12005–12028.

    Article  Google Scholar 

  • Shulyatin, O.G., Andreev, S.I., Belyatskii, B.V., and Trukhalev, A.I., Structural-Tectonic Position and Age of the Plutonic Mafic-Ultramafic Complexes of MAR, in 60 let v Arktike, Antarktike i Mirovom okeane (60 Years in Arctic, Antarctica, and World Ocean), St. Petersburg: VNI-IOkeangeologiya, 2008, pp. 392–408.

    Google Scholar 

  • Siebel, W., Becchiob, R., Volkerc, F., Hansene, M.A.F., et al., Trinidade and Martin Vaz Islands, South Atlantic: Isotopic (Sr, Nd, Pb) and Trace Element Constraints on Plume Related Magmatism, Tectonophysics, 2000, vol. 13, pp. 79–103.

    Google Scholar 

  • Skolotnev, S.G., Turko, N.N., Sokolov, S.Yu., et al., New Data on the Geological Structure of the Junction of the Cape Verde Plateau, Cape Verde Abyssal Plain, and Bathymetrists Seamounts (Central Atlantic Ocean), Dokl. Earth Sci., 2007, vol. 416, no. 7, pp. 1037–1041.

    Article  Google Scholar 

  • Skolotnev, S.G., Kolodyazhnyi, S.Yu., Tsukanov, N.V., et al., Neotectonic Morphotructures in the Junction Zone of the Cape Verde Rise and Cape Verde Abyssal Plain, Central Atlantic, Geotectonics, 2009, vol. 42, pp. 51–66.

    Article  Google Scholar 

  • Skolotnev, S.G., Bel’tenev, V.E., Lepekhina, E.N., and Ipat’eva, I.S., Younger and Older Zircons from Rocks of the Oceanic Lithosphere in the Central Atlantic and Their Geotectonic Implications, Geotectonics, 2010, vol. 44, pp. 462–492.

    Article  Google Scholar 

  • Sun, S.-S. and McDonough, W.F., Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes, in Magmatism in the Ocean Basins, Saunders, A.D. and Norey, M.J., Geol. Soc. London, Sp. Publ., 1989, vol. 42, pp. 313–345.

  • Weaver, B.L., The Origin of Ocean Island Basalt End-Member Compositions: Trace Elements and Isotopic Constraints, Earth Planet. Sci. Lett., 1991, vol. 104, pp. 381–397.

    Article  Google Scholar 

  • Weaver, B.L., Wood, D.A., Tarney, J., and Joron, J.L., Role of Subducted Sediments in the Genesis of Ocean-Island Basalts: Geochemical Evidence from South Atlantic Ocean Islands, Geology, 1986, vol. 14, pp. 275–278.

    Article  Google Scholar 

  • White, R.S., Detrick, R.S., Mutter, J.S., et al., New Seismic Images of Oceanic Crustal Structure, Geology, 1990, vol. 18, pp. 462–465.

    Article  Google Scholar 

  • Williams, I.S., Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Google Scholar 

  • Zakrutkin, V.V., Metamorphic Evolution of Amphiboles, Zap. Vses. Mineral. O-va, 1968, 97, pp. 13–23.

    Google Scholar 

  • Zindler, A. and Hart, S.R., Chemical Geodynamics, Earth Planet. Sci. Lett., 1986, vol. 14, pp. 493–571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Skolotnev.

Additional information

Original Russian Text © S.G. Skolotnev, V.V. Petrova, A.A. Peyve, 2012, published in Petrologiya, 2012, Vol. 20, No. 1, pp. 66–94.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skolotnev, S.G., Petrova, V.V. & Peyve, A.A. Origin of submarine volcanism at the eastern margin of the central atlantic: Investigation of the alkaline volcanic rocks of the carter seamount (Grimaldi Seamounts). Petrology 20, 59–85 (2012). https://doi.org/10.1134/S086959111106004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111106004X

Keywords

Navigation