Skip to main content
Log in

Topaz granites in northern Kazakhstan

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents the first data obtained on topaz granites from dikes in columbite-bearing granites of the Kokchetav block, northern Kazakhstan. The columbite-bearing granites (398 ± 3 Ma, Rb-Sr method) compose large massifs and ubiquitously contain columbite as an accessory mineral in amounts from a few to a few dozen grams per ton. The topaz granites make up dikes up to 70–100 m long and 0.4–1.5 m thick, which have sharp contacts with the host granites. The composition of the topaz granites is as follows: albite ∼50%, potassic feldspar ∼24–26%, quartz ∼20%, topaz 3–5%, biotite and muscovite ∼1%. Topaz occurs in inner contact zones in the form of large (3–4 cm) crystals, which grew inward from dike contacts and is ubiquitous in the fine-grained groundmass as small (no larger than 0.05 mm) crystals. The ore minerals in the topaz granites (zircon, thorite, bastnaesite, Y-cerite, monazite, Y-fluorite, W-ixiolite, tantalite, columbite, and uraninite) developed as very small grains, which can be identified only under a microprobe and electron microscope. W-ixiolite was found only in topaz crystals. The topaz granites are rich in albite, contain Na > K and F concentrations from 0.2 to 0.97 wt %. Compared to the host columbite-bearing granites, the topaz granites are 10–15 times richer in Ta and Li, 3-8 times richer in Rb, Cs, Nb, Sn, F, and Be but 1.2–2 times poorer in U, Th, and REE. The columbite-bearing granites have Ta/Nb = 1: 20, while this ratio in the topaz granites is 1: 3, a fact highlighting the enrichment of the granites in Ta and their geochemical autonomy with respect to columbite-bearing granites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Autrisicchio, C. De Vito, V. Ferrini, and P. Orlandi, “Nb and Ta Oxide Minerals in the Fonte del Plete Granitic Pegmatite Dike, Island of Elba, Italy,” Canad. Mineral. 40, 799–814 (2002).

    Article  Google Scholar 

  2. A. A. Beus, V. A. Severov, A. A. Sitnin, and K. D. Subbotin, Albitized and Greisenized Granites (Apogranites) (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  3. E. H. Christiansen, D. M. Burt, M. F. Sheridan, and R. T. Wilson, “The Petrogenesis of Topaz Rhyolites from the Western United States,” Contrib. Mineral. Petrol. 83, 16–30 (1983).

    Article  Google Scholar 

  4. P. J. Eadington and B. Nashar, “Evidence for the Magmatic Origin of Quartz-Topaz Rocks from the New England Batholith, Australia,” Contrib. Mineral. Petrol. 67, 433–438 (1978).

    Article  Google Scholar 

  5. A. I. Ginzburg, S. A. Gorzhevskaya, and G. A. Sidorenko, “Tungsten-Ixiolite: A Variety of Ixiolite,” Zap. Vses. Mineral. O-va, No. 1, 63–73 (1969).

  6. J. Haapala, “Magmatic and Postmagmatic Processes in Tin-Mineralized Granites: Topaz-Bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland,” J. Petrol 38, 1645–1659 (1997).

    Article  Google Scholar 

  7. J. Haapala and S. Lukkazi, “Petrological and Geochemical Evolution of the Kymi Stock, a Batholith, Finland,” Lithos 80, 347–362 (2005).

    Article  Google Scholar 

  8. X. L. Huang, R. C. Wang, X. M. Chen, et al., “Vertical Variations in the Mineralogy of the Yichum Topaz-Lepidolite Granite,” Can. Mineral. 40, 1047–1068 (2002).

    Article  Google Scholar 

  9. C. Jahnston and B. W. Chappell, “Topaz-Bearing Rocks from Mount Gibson, North Queensland, Australia,” Am. Mineral. 77, 303–313 (1992).

    Google Scholar 

  10. H. Keppler and P. Wyllie, “Partitioning of Cu, Sn, Mo, W, U, and Th between Melt and Aqueous Fluid in the Systems Haplogranite-H2O-HCl and Haplogranite-H2O-HF,” Contrib. Mineral. Petrol. 109, 139–150 (1999).

    Article  Google Scholar 

  11. D. J. Kontak, “The East Kemptville Topaz-Muscovite Leucogranite, Nova Scotia,” Can. Mineral. 29, 37–60 (1991).

    Google Scholar 

  12. W. T. Kortemlier and D. M. Burt, “Ongonite and Topazite Dikes in the Fluing Wranch area, Tonto Basin, Arizona,” Am. Mineral. 73, 507–523 (1988).

    Google Scholar 

  13. P. V. Koval’, V. I. Kovalenko, M. I. Kuz’min, et al., “Mineral Assemblages, Composition, and Nomenclature of Micas in Rare-Metal Albite-Bearing Granitoids,” Dokl. Akad. Nauk SSSR 202(5), 1174–1178 (1972).

    Google Scholar 

  14. V. I. Kovalenko, “Genetic Problems of Rare-Metal Granitoids,” Zap. Vses. Mineral. O-va, No. 6, 664–677 (1975).

  15. V. I. Kovalenko, Petrology and Geochemistry of Rare-Metal Granitoids (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  16. V. I. Kovalenko and N. I. Kovalenko, Ongonites (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  17. V. I. Kovalenko, M. I. Kuz’min, Ts. Tseden, and N. V. Vladykin, “Lithium-Fluorine Keratophyres (Ongonites),” in Year-Book-1969 of the Siberian Geochemical Institute (Institut geokhimii SO RAN, Irkutsk, 1970), pp. 85–88 [in Russian].

    Google Scholar 

  18. V. I. Kovalenko, V. V. Yarmolyuk, I. A. Andreeva, et al., Magma Types and Sources in the Earth’s History (IGEM RAN, Moscow, 2006), Vol. 2 [in Russian].

    Google Scholar 

  19. A. V. Krasil’nikova and F. A. Letnikov, “Accessory Minerals of the Granitoids of the Kokchetav Massif,” in Accessory Minerals (Nauka, Moscow, 1968), pp. 315–319 [in Russian].

    Google Scholar 

  20. F. A. Letnikov, “Rare-Metal Granites of the Kokshetau Block,” in Ore-Bearing Granites of Russia and Adjacent Countries (IMGRE, Moscow, 2000).

    Google Scholar 

  21. F. A. Letnikov and Yu. A. Kostitsyn, “Rb-Sr Dating of Anatectic Granites of the Balkashino Complex, Kokchetav Block, Northern Kazakhstan,” Dokl. Akad. Nauk 387(3), 378–381 (2002) [Dokl. Earth Sci. 387, 1035–1037 (2002)].

    Google Scholar 

  22. F. A. Letnikov, “Geochemistry of Granitic Complexes in the Composite Zerenda Batholith, Northern Kazakhstan,” Geokhimiya, No. 7, 691–711 (2005) [Geochem. Int. 43, 627–645 (2005)].

  23. F. A. Letnikov, Granitoids of Blocked Areas (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  24. R. V. Masgutov, “Types of Albitized Granites,” Izv. AN Kaz. SSR. Seriya Geol, No. 40, 55–70 (1960).

  25. F. G. Reyf, R. Seltmann, and G. P. Zaraisky, “The Role of Magmatic Processes in the Formation of Banded Li, F-Enriched Granites from the Orlovka Tantalum Deposit,” Can. Mineral. 38, 915–936 (2000).

    Article  Google Scholar 

  26. O. M. Rosen and Yu. A. Serykh, “Migration of Chemical Elements in the Earth’s Crust during Granite Formation,” Geokhimiya, No. 2, 1116–1130 (1970).

  27. K. N. Shatagin, “Disturbance of Rb-Sr Isotopic K-Feldspar System in the Granitoids of the Zolotonoshskii Massif,” Dokl. Akad. Nauk 344, 106–109 (1995).

    Google Scholar 

  28. K. N. Shatagin, “Age and Origin of the Granitoids of the Zerenda Batholith,” Dokl. Akad. Nauk 336(5), 674–676 (1994).

    Google Scholar 

  29. K. N. Shatagin, K. E. Degtyarev, V. N. Golubev, et al., “Vertical and Lateral Heterogeneity of the Crust beneath Northern Kazakhstan from Geochronological and Isotopic-Geochemical Data on Paleozoic Granitoids,” Geotektonika, No. 5, 26–44 (2001) [Geotectonics 35, 356–372 (2001)].

  30. I. C. Stormer, “A Practical Two-Feldspar Geothermometer,” Am. Mineral. 60, 667–674 (1975).

    Google Scholar 

  31. R. P. Taylor, “Petrological and Geochemical Characteristics of the Pleasant Ridge Zinnwaldite-Topaz Granite,” Can. Mineral. 30, 895–921 (1992).

    Google Scholar 

  32. I. V. Veksler and Thomas R. “An Experimental Study of B-, P-and F-Rich Synthetic Granite Pegmatite at 0.1 and 0.26 Pa,” Contrib. Mineral. Petrol. 143, 673–683 (2002).

    Google Scholar 

  33. N. V. Vladykin, Mineralogical-Geochemical Features of Rare-Metal Granitoids in Mongolia (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  34. A. V. Voloshin and Ya. A. Pakhomovskii, Mineralogy of Tantalum and Niobium in Rare-Metal Pegmatites (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  35. R. C. Wang, F. Fontan, S. J. Yu, et al., “The Association of Columbite, Tantalite and Tapiolite in the Suzhou Granite, China,” Can. Mineral. 35, 699–706 (1997).

    Google Scholar 

  36. J. D. Webster and C. R. Rebbert, “Experimental Investigation of H2O and Cl Solubilites in F-Enriched Silicate Liquids: Implications for Volatile Saturation of Topaz Rhyolite Magmas,” Contrib. Mineral. Petrol. 132, 198–207 (1998).

    Article  Google Scholar 

  37. B. J. Williamson, C. J. Stanley, and J. J. Wilkinson, “Implications from Inclusions in Topaz for Greisenization and Mineralization in the Hensbarrow Topaz Granite, Cornwall, England,” Contrib. Mineral. Petrol. 127, 119–128 (1997).

    Article  Google Scholar 

  38. S. V. Yudintsev, L. I. Simonova, and E. V. Anokhina, “Tin-Bearing Granites of the Kokchetav Block,” Izv. Akad. Nauk SSSR, Ser. Geol, No. 7, 36–44 (1992).

  39. W. Zhang, R. M. Hua, and R. C. Wang, “Intergrowth of Wolframoixiolite and W-rich Manganocolumbite in Dajishan Tungsten Deposit, Jiangxi Province, South China,” Mineral Deposits [Kuangchuang Dizhi], 2, 158–165 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Letnikov.

Additional information

Original Russian Text © F.A. Letnikov, 2008, published in Petrologiya, 2008, Vol. 16, No. 4, pp. 339–355.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letnikov, F.A. Topaz granites in northern Kazakhstan. Petrology 16, 319–334 (2008). https://doi.org/10.1134/S0869591108040012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591108040012

Keywords

Navigation