Skip to main content
Log in

An Analysis of Possibilities of GNSS Local Strain Monitoring Networks in Earthquake-Prone Areas

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

We examined the experience in using global, regional, and local coordinate reference systems. It is shown that the use of a local GNSS reference system for measuring station coordinates and for monitoring their changes over time enhances the accuracy and reliability in the estimation of pre- co-, and post-seismic crustal movements and deformations because of the shortest base lines being involved in the processing. The use of a local reference system also simplifies the data processing procedures. We did a test calculation to see how the configuration of a GNSS observation network affects the accuracy of the observations. An experiment based on a large amount of measured information showed that the option where the number of redundant observations is twice as low is more accurate by a factor of 1.5 owing to the exclusion of long baselines. The efficiency of determining spatial movements was estimated using Fisher’s test to demonstrate that the reduced network (where long lines have been excluded from calculation) has the variance of desired characteristics significantly larger than the variance of observation errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Delone, B.N., On an empty sphere, Izv. AN SSSR, OMEN,, 1934, no. 4, pp. 793–800.

  2. Dokukin, P.A., Kaftan, V.I., and Krasnoperov, R.I., The effects of shape of triangles in a geodetic network on the results of determining ground surface deformations, Izv. Vuzov, Geodeziya i Aerofotos’emka, 2010, no. 5, pp. 6–11.

  3. Kaftan, V.I., Gvishiani, A.D., Morozov, V.N., and Tatarinov, V.N., The procedure and results of determining crustal movements and deformations from GNSS data at the Nizhne-Kansky geodynamic test site in an area of nuclear waste disposal, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, vol. 16, no. 1, pp. 83–94. https://doi.org/10.21046/2070-7401-2019-16-1-83-94

  4. Kaftan, V.I., Sidorov, V.A., and Ustinov, A.V., A comparative analysis of the accuracy attainable for the local monitoring of Earth’s surface movements and deformation using the GPS and GLONASS navigation satellite systems, J. Volcanol. Seismol., 2017, vol. 11, no. 3, pp. 217–224. https://doi.org/10.7868/S020303061703004X

    Article  Google Scholar 

  5. Kaftan, V.I. and Ustinov, A.V., Enhancing the accuracy of local geodynamic monitoring using global navigation satellite systems, Gorn. Zhurn., 2015, no. 10, pp. 32–37. https://doi.org/10.17580/gzh.2015.10.06

  6. Kaftan, V.I., An analysis of ground movements and deformations from 13-year GPS observations before and during the July 2019 Ridgecrest, USA earthquakes, J. Volcanol. Seismol., vol. 15, no. 2, pp. 97–106. https://doi.org/10.1134/S0742046321010115

  7. Kashin, L.A., Postroenie klassicheskoi astronomo-geodezicheskoi seti Rossii i SSSR (1816–1991): nauchno-tekhnicheskii i istoricheskii obzor (The Establishment of the Classical Atsronomo-Geodetic Network in Russia and the USSR (1816–1991): A Scientific–Technical and Historical Review) Moscow: Kartgeotsentr-Geodezizdat, 1999.

  8. Kuzmin, Yu.O., Modern geodynamics: From crustal movements to the monitoring of critical facilities, Fizika Zemli, 2019, no. 1, pp. 78–103. https://doi.org/10.31857/S0002-33372019178-103

  9. Melnikov, A.Yu., An analysis of the precise point positioning method for assessing its possible uses in geodynamic research, Izv. Vuzov, Geodeziya i Aerofotos’emka, 2018, vol. 62, no. 6, pp. 605–615. https://doi.org/10.30533/0536-101X-2018-62-6-605-615

    Article  Google Scholar 

  10. Pobedinsky, G.G. and Kaftan, V.I., Coordinate systems, global, continental, regional, and national: State-of-the-art, problems, perspectives, Nauki o Zemle, 2020, no. 3, pp. 4–59.

  11. Alamimi, Z., EUREF Technical Note 1: Relationship and Transformation between the International and the European Terrestrial Reference Systems, Version June 28, 2018, Institut National de l’Information Géographique et Forestière (IGN), France, 2018, p. 11.

  12. http://www.epncb.oma.be/_documentation/guidelines/.

  13. Alamimi, Z., Angerman, D., Argus, D.F., Blewitt, G., Boucher, C., Chao, B., Drewes, H., Eanes, R., Feissel, M., Ferland, R., Herring, T.A., and Holt, B., The terrestrial reference frame and the dynamic Earth, EOS Transactions, American Geophysical Union, 2001, vol. 82, no. 25, pp. 273–284.

    Google Scholar 

  14. Altamimi, Z., Rebischung, P., Metivier, L., and Collilieux, X., ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res. Solid Earth, 2016, vol. 121, pp. 6109–6131.https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  15. Argus, D.F. and Gordon, R.G., No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 1991, vol. 18, no. 11, pp. 2039–2042.

    Article  Google Scholar 

  16. Barthelmes, F., Global models, in Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series, Grafarend, E., Ed., Cham: Springer, 2018, pp. 1–9. https://doi.org/10.1007/978-3-319-02370-0_43-2

    Book  Google Scholar 

  17. Bernese GNSS Software Version 5.2, Dach R., Lutz S., Walser P., Fridez P., Eds., Publisher: Astronomical Institute, University of Bern, 2021. http://www.bernese. unibe.ch/docs/DOCU52.pdf. https://doi.org/10.7892/boris.72297

  18. Frank, F.C., Deduction of earth strain from survey data, Bull. Seismol. Soc. Am., 1966, vol. 56, pp. 35–42.

    Article  Google Scholar 

  19. Furst, S., Peyret, M., Chéry, J., and Mohammadi, B., Lithosphere rigidity by adjoint-based inversion of interseismic GPS data, application to the Western United States, Tectonophysics, 2017, vol. 746, pp. 364–383. https://doi.org/10.1016/j.tecto.2017.03.015

    Article  Google Scholar 

  20. Grafarend, E. and Schaffrin, B., Unbiased free net adjustment, Survey Review, 1974, vol. 22(171), pp. 200–218.https://doi.org/10.1179/sre.1974.22.171.200

    Article  Google Scholar 

  21. Kaula, W., Theory of Satellite Geodesy: Applications of Satellites to Geodesy, Special series of brief books covering selected topics in the Pure and applied sciences, Blaisdell Pub. Co., 1966.

  22. Kaftan, V., Malkin, Z., Pasynok, S., Pobedinsky, G., and Popadiev, V., Reference frames, in National Report for the IAG of the IUGG 2015–2018, Savinykh, V.P. and Kaftan, V.I., Eds., Geoinf. Res. Papers, 2019, vol. 7, no. 1. BS7003. (Moscow: GCRAS Publ., 2019. 99 p.)https://doi.org/10.2205/2019IUGG-RU-IAG.

  23. Kaftan, V.I., Kaftan, I., and Gök, E., Crustal movements and deformations in eastern Turkey in connection with the Van earthquake (October 23, 2011, Mw = 7.2): Study from GPS data, Izvestia, Physics of the Solid Earth, 2021, vol. 57, no. 3, pp. 30–44. https://doi.org/10.1134/S1069351321030071

    Article  Google Scholar 

  24. Moritz, H., Geodetic reference system 1980, Bulletin Geodesique, 1980, vol. 54, pp. 395–405.

    Article  Google Scholar 

  25. Shen, Z.-K., Jackson, D.D., and Ge, B.X., Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J. Geophys. Res., 1996, vol. 101(B12), pp. 27957–27980. https://doi.org/10.1029/96JB02544

    Article  Google Scholar 

  26. Teza, G., Pesci, A., and Galgaro, A., Grid strain and grid_strain3: Soft-ware packages for strain field computation in 2D and 3D environments Comp. Geosci., 2008, vol. 34, no. 9, pp. 1142–1153. https://doi.org/10.1016/j.cageo.2007.07.006

    Article  Google Scholar 

  27. Tsuboi, C., Investigation on the deformation of the earth’s crust found by precise geodetic means, Jap. J. Astron. Geophys., 1933, vol. 10, pp. 93–248.

    Google Scholar 

  28. Welsch, W., A review of the adjustment of free networks, Survey Review, 1979, vol. 25(194), pp. 167–180. https://doi.org/10.1179/sre.1979.25.194.167

    Article  Google Scholar 

  29. Wu, J., Tang, C., and Chen, Y., Effect of triangle shape factor on precision of crustal deformation calculated, J. Geod. Geodyn., 2003, vol. 23(3), pp. 26–30 (in Chinese).

    Google Scholar 

  30. Zubovich, A.V. and Mukhamediev, Sh.A., A method of superimposed triangulations for calculation of velocity gradient of horizontal movements: application to the Central Asian GPS network, Geodyn. Tectonophys., 2010, vol. 1, no. 2, pp. 169–185.

    Article  Google Scholar 

Download references

Funding

This work was supported within the framework of a state assignment at the Geophysical Center, Russian Academy of Sciences approved by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kaftan.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaftan, V.I., Tatarinov, V.N. An Analysis of Possibilities of GNSS Local Strain Monitoring Networks in Earthquake-Prone Areas. J. Volcanolog. Seismol. 15, 379–386 (2021). https://doi.org/10.1134/S074204632106004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S074204632106004X

Keywords:

Navigation