Skip to main content
Log in

Pathological Athlete’s Heart

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The high risk of cardiac disorders and sudden cardiac death in athletes with the frequent absence of structural changes in the myocardium at autopsy brings to the agenda today a discussion of the problems of the adverse effects of intense loads of modern sports on the cardiovascular system of athletes and the development of heart pathology induced by physical activity. The review examines the evidence for the existence of this pathology, its various clinical manifestations, and pathogenesis. The work discusses the historical aspects of the athlete’s heart. The article raises the problems of recognition of sports myocardial pathology, its designation, and inclusion in the international classification of cardiomyopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Trivax, J.E. and McCullough, P.A., Phidippides cardiomyopathy: a review and case illustration, Clin. Cardiol., 2012, vol. 35, no. 2, p. 69.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heffernan, K.S., How healthy were the arteries of Phidippides? Clin. Cardiol., 2012, vol. 35, no. 2, p. 65.

    Article  PubMed  Google Scholar 

  3. Heidbuchel, H. and La Gerche, A., The right heart in athletes: evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy, Herzschrittmacherther. Elektrophysiol., 2012, vol. 23, no. 2, p. 82.

    Article  CAS  PubMed  Google Scholar 

  4. Mavrogeni, S.I., Tsarouhas, K., Spandidos, D.A., et al., Sudden cardiac death in football players: towards a new pre-participation algorithm, Exp. Ther. Med., 2019, vol. 17, no. 2, p. 1143.

    PubMed  Google Scholar 

  5. Pieles, G.E. and Stuart, A.G., The adolescent athlete’s heart; a miniature adult or grown-up child? Clin. Cardiol., 2020, vol.8, no. 43, p. 852.

    Article  Google Scholar 

  6. Pelliccia, A., Heidbuchel, H., Corrado, D., et al., The ESC Textbook of Sports Cardiology, Oxford University Press, 2019, 478 p.

    Book  Google Scholar 

  7. Harmon, K.G., Asif, I.M., Maleszewski, J.J., Owens, D.S., et al., Incidence, cause, and comparative frequency of sudden cardiac death in national collegiate athletic association athletes: a decade in review, Circulation, 2015, vol. 7, no. 132, p. 10.

    Article  Google Scholar 

  8. Finocchiaro, G., Papadakis, M., Robertus, J.L., et al., Etiology of sudden death in sports: insights from a United Kingdom regional registry, J. Am. Coll. Cardiol., 2016, vol. 67, no. 18, p. 2108.

    Article  PubMed  Google Scholar 

  9. Colombo, C., Finocchiaro, G., The female athlete’s heart: facts and fallacies, Curr. Treat. Options Cardiovasc. Med., 2018, vol. 20, no. 12, p. 101.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bohm, P., Scharhag, J., and Meyer, T., Data from a nationwide registry on sports-related sudden cardiac deaths in Germany, Eur. J. Prev. Cardiol., 2016, no. 23, p. 649.

  11. Farzam, K. and Akhondi, H., Sports Participation Evaluation, Treasure Island (FL): StatPearls, 2020.

    Google Scholar 

  12. Vancini, R.L., Nikolaidis, P.T., and Lira, C.A., Prevention of sudden death related to sport: the science of basic life support-from theory to practice, J. Clin. Med., 2019, vol. 4, no. 8, p. 556.

    Article  Google Scholar 

  13. Gray, B. and Semsarian, C., Utility of genetic testing in athletes, Clin. Cardiol., 2020, vol. 43, no. 8, p. 915.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Holst, A.G., Winkel, B.G., Theilade, J., et al., Incidence and etiology of sports-related sudden cardiac death in Denmark-implications for preparticipation screening, Heart Rhythm, 2010, vol. 7, no. 10, p. 1365.

    Article  PubMed  Google Scholar 

  15. Margey, R., Roy, A., Tobin, S., et al., Sudden cardiac death in 14- to 35-year-olds in Ireland from 2005 to 2007: a retrospective registry, Europace, 2011, vol. 13, no. 10, p. 1411.

    Article  PubMed  Google Scholar 

  16. Meyer, L., Stubbs, B., Fahrenbruch, C., et al., Incidence, causes, and survival trends from cardiovascular-related sudden cardiac arrest in children and young adults 0 to 35 years of age: a 30-year review, Circulation, 2012, vol. 126, no. 11, p. 1363.

    Article  PubMed  Google Scholar 

  17. Wilson, M.G., Drezner, J.A., and Sharma, S., IOC Manual of Sports Cardiology, Wiley, 2017.

    Google Scholar 

  18. Asif, I.M. and Harmon, K.G., Incidence and etiology of sudden cardiac death: new updates for athletic departments, Sports Health, 2017, vol. 9, no. 3, p. 268.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pigolkin, Yu.I., Shilova, M.A., Zakharov, S.N., et al., Sudden death in young people during various types of physical activity, Sud.-Med. Ekspert., 2019, vol. 62, no. 1, p. 50.

    Article  PubMed  Google Scholar 

  20. Egger, F., Scharhag, J., Kästner, A., et al., FIFA Sudden Death Registry (FIFA-SDR): a prospective, observational study of sudden death in worldwide football from 2014 to 2018, Br. J. Sports Med., 2022, vol. 56, no. 2, p. 80.

    Article  PubMed  Google Scholar 

  21. Pelliccia, A., Sharma, S., Gati, S., et al., ESC Scientific Document Group: 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease, Eur. Heart J., 2021, vol. 42, no. 1, p. 17.

    Article  CAS  PubMed  Google Scholar 

  22. Maron, B.J. and Salberg, L., A Guide to Hypertrophic Cardiomyopathy, Wiley, 2018.

    Google Scholar 

  23. Emery, M.S. and Kovacs, R.J., Sudden cardiac death in athletes, JACC Heart Failure, 2018, vol. 6, no. 1, p. 30.

    Article  PubMed  Google Scholar 

  24. MacLachlan, H. and Drezner, J.A., Cardiac evaluation of young athletes: time for a risk-based approach? Clin. Cardiol., 2020, vol. 8, no. 43, p. 906.

  25. Thiene, G., Sudden cardiac death in the young: a genetic destiny? Clin. Med., 2018, vol. 18, no. 2, p. 17.

    Article  Google Scholar 

  26. Barretta, F., Mirra, B., Monda, E., et al., The hidden fragility in the heart of the athletes: a review of genetic biomarkers, Int. J. Mol. Sci., 2020, vol. 21, no. 18, p. 6682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chumakova, O.S., Sudden cardiac death in young sportsmen: prospects for genetic screening, Kremlevskaya Med, 2017, no. 1, p. 13.

  28. Fellmann, F., van El, C., Charron, P., et al., European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death, Eur. J. Hum. Genet., 2019, vol. 27, p. 1763.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Belinda, G. and Semsarian, C., Utility of genetic testing in athletes, Clin. Cardiol., 2020, vol. 43, no. 8, p. 915.

    Article  Google Scholar 

  30. Grassi, S., Campuzano, O., Coll, M., et al., Update on the diagnostic pitfalls of autopsy and post-mortem genetic testing in cardiomyopathies, Int. J. Mol. Sci., 2021, vol. 8, no. 22, p. 4124.

    Article  Google Scholar 

  31. Graevskaya, N.D., Vliyanie sporta na serdechno-sosudistuyu sistemu (The Effect of Sports on the Cardiovascular System), Moscow: Meditsina, 1975.

  32. Deutsch, F. and Kauf, E., Herz und Sport, Berlin: Urban und Schwarzenberg, 1924.

    Google Scholar 

  33. Rost, R., The athlete’s heart: what we did learn from Henschen, what Henschen could have learned from us! J. Sports. Med. Phys. Fitness, 1990, vol. 30, no. 4, p. 339.

    CAS  PubMed  Google Scholar 

  34. Zelenin, V.F., Heart and sports, Teor. Prakt. Fiz. Kul’t., 1928, vol. 3, no. 1, p. 13.

    Google Scholar 

  35. Lang, G.F., Voprosy kardiologii (Issues in Cardiology), Moscow: Meditsina, 1936.

  36. Dembo, A.G., Overstrain of a healthy and sick heart, Klin. Med., 1966, no. 11, p. 5.

  37. Krenc, Z., Relationship between adaptive morphological and electrophysiological remodeling of the left ventricle in young athletes after an 8-month period of sports training, Pediatr. Exerc. Sci., 2016, vol. 28, no. 1, p. 71.

    Article  PubMed  Google Scholar 

  38. Samesina, N.I., Azevedo, L.F., Nagen Janot De Matos, L.D., et al., Comparison of electrocardiographic criteria for identifying left ventricular hypertrophy in athletes from different sports modalities, Clinics (São Paulo), 2017, vol. 76, no. 6, p. 343.

    Article  Google Scholar 

  39. Perrault, H. and Turcotte, R.A., Exercise-induced cardiac hypertrophy: fact or fallacy? Sports Med., 1994, vol. 17, no. 5, p. 288.

    Article  CAS  PubMed  Google Scholar 

  40. Dibner, R.D., Differential diagnosis of chronic cardiac overstrain in athletes, Kardiologiya, 1986, no. 3, p. 108.

    Google Scholar 

  41. Dembo, A.G. and Zemtsovskii, E.V., Sportivnaya kardiologiya: rukovodstvo dlya vrachei (Sports Cardiology: a Guide for Doctors), Leningrad: Meditsina, 1989.

    Google Scholar 

  42. Merkulova, R.A., Khrushchev, S.V., and Khel’bin, V.P., Vozrastnaya kardiogemodinamika (Age-Related Cardiohemodynamics), Moscow: Meditsina, 1989.

  43. Mikhanov, I.A., Electrocardiographic characteristics of blood circulation types in young athletes with myocardial dystrophy, Vestn. Sportivnoi Med. Ross., 1993, vol 2, no. 3, p. 45.

    Google Scholar 

  44. Pelliccia, A., Di Paolo, F.M., Corrado, D., et al., Evidence for efficacy of the Italian national pre-participation screening programme for identification of hypertrophic cardiomyopathy in competitive athletes, Eur. Heart J., 2006, vol. 27, no. 18, p. 2196.

    Article  PubMed  Google Scholar 

  45. Sharma, S., Maron, B.J., and Whyte, G., Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy, J. Am. Coll. Cardiol., 2002, vol. 40, no. 8, p. 1431.

    Article  PubMed  Google Scholar 

  46. Scharhag, J., Löllgen, H., and Kindermann, W., Competitive sports and the heart: benefit or risk? Dtsch. Aerztebl. Int., 2013, vol. 110, nos. 1–2, p. 14.

    Google Scholar 

  47. Waterhouse, D.F., Ismail, T.F., Prasad, S.K., Wilson, M.G., and O’Hanlon, R., Imaging focal and interstitial fibrosis with cardiovascular magnetic resonance in athletes with left ventricular hypertrophy: implications for sporting participation, Br. J. Sports Med., 2012, no. 46, p. 69.

  48. Androulakis, E. and Swoboda, P.P., The role of cardiovascular magnetic resonance in sports cardiology; current utility and future perspectives, Curr. Treat. Options Cardiovasc. Med., 2018, no. 31, vol. 20, p. 86.

    Article  PubMed  PubMed Central  Google Scholar 

  49. D’Ascenzi, F., Anselmi, F., Berti, B., and Capitani, E., Prevalence and significance of T-wave inversion in children practicing sport: a prospective, 4-year follow-up study, Int. J. Cardiol., 2019, no. 279, p. 100.

  50. Maestrini, V., Torlasco, C., Hughes, R., and Moon, J.C., Cardiovascular magnetic resonance and sport cardiology: a growing role in clinical dilemmas, J. Cardiovasc. Transl. Res., 2020, vol. 13, no. 3, p. 296.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tahir, E., Starekova, J., Muellerleile, K., et al., Myocardial fibrosis in competitive triathletes detected by contrast-enhanced CMR correlates with exercise-induced hypertension and competition history, J. Am. Coll. Cardiol. Img., 2018, no. 11, p. 1260.

  52. Maron, B.J., Doerer, J.J., and Haas, T.S., Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006, Circulation, 2009, vol. 8, no. 3, p. 1085.

    Article  Google Scholar 

  53. Sheppard, M.N., Aetiology of sudden cardiac death in sport: a histopathologist’s perspective, Br. J. Sports Med., 2012, no. 46, p. 15.

  54. Valanchyute, A.L. and Lyasauskaite, V.V., Sudden death in young athletes: data from postmortem coronary angiography, Arkh. Patol., 1994, vol. 26, no. 2, p. 42.

    Google Scholar 

  55. Siahpoosh, M.B., Ebadiani, M., Hosseini, G.S., et al., Sudden cardiac death and its prevention ways among athletes according to iranian traditional medicine, Iran. J. Public Health., 2013, vol. 42, no. 3, p. 344.

    PubMed  PubMed Central  Google Scholar 

  56. Lindsay, M.M. and Dunn, F.G., Biochemical evidence of myocardial fibrosis in veteran endurance athletes, Br. J. Sports Med., 2007, vol. 41, no. 7, p. 447.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhikin, N.P., Sirotin, A.B., and Kolegova, N.G., Frequency and structure of rhythm and conduction disorders in young athletes depending on the severity of left ventricular hypertrophy, Sportivnaya Med.: Nauka Prakt., 2014, no. 3, p. 83.

  58. Elfimova, I.V., Elfimov, D.A., and Belova, A.A., Cardiovascular system overstrain in biathletes, Med. Nauka Obraz. Urala, 2018, vol. 19, no. 2, p. 108.

    Google Scholar 

  59. Bille, K., Figueiras, D., and Schamasch, P., Sudden cardiac death in athletes: the Lausanne recommendations, Eur. J. Cardiovasc. Prev. Rehabil., 2006, vol. 13, no. 6, p. 895.

    Article  Google Scholar 

  60. Pelliccia, A., Solberg, E.E., Papadakis, M., et al., Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the sport cardiology section of the European Association of Preventive Cardiology (EAPC), Eur. Heart J., 2019, no. 40, p. 19.

  61. Pelliccia, A. and Sharma, S., The 2020 ESC Guidelines on Sport Cardiology, Eur. Heart J., 2020, vol. 42, no. 1, p. 5.

    Google Scholar 

  62. Schmied, C. and Borjesson, M., Sudden cardiac death in athletes, J. Intern. Med., 2014, vol. 275, no. 2, p. 93.

    Article  CAS  PubMed  Google Scholar 

  63. Selye, H., Conditioning by cortisol for the production of acute massive myocardial necroses during neuromuscular exertion, Circ. Res., 1958, vol. 6, no. 2, p. 168.

    Article  CAS  PubMed  Google Scholar 

  64. Schwellnus, M., Soligard, T., Juan-Manuel, A., and Bahr, R., How much is too much? 2: International Olympic Committee consensus statement on load in sport and risk of illness, Br. J. Sports Med., 2016, vol. 50, no. 17, p. 1043.

    Article  PubMed  Google Scholar 

  65. Theofilidis, G., Bogdanis, C., Koutedakis, Y., et al., Monitoring exercise-induced muscle fatigue and adaptations: making sense of popular or emerging indices and biomarkers, Sports (Basel), 2018, vol. 6, no. 4, p. 153.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Guasch, E. and Mont, L., Diagnosis, pathophysiology, and management of exercise-induced arrhythmias, Nat. Rev. Cardiol., 2017, vol. 2, no. 14, p. 88.

    Article  Google Scholar 

  67. Aizer, A., Gaziano, J.M., Cook, N.R., and Manson, J.E., Relation of vigorous exercise to risk of atrial fibrillation, Am. J. Cardiol., 2009, no. 103, p. 1572.

  68. Herm, J., Töpper, A., Wutzler, A., Kunze, C., et al., Frequency of exercise-induced ST-T-segment deviations and cardiac arrhythmias in recreational endurance athletes during a marathon race: results of the prospective observational Berlin Beat of Running study, BMJ Open, 2017, vol. 7, no. 8, p. e015798.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Abdulla, J. and Nielsen, J.R., Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis, Europace, 2009, no. 11, p. 1156.

  70. Andersen, K., Farahmand, B., Ahlbom, A., et al., Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study, Eur. Heart J., 2013, no. 34, p. 3624.

  71. Sorokin, A.V., Araujo, C.G., Zweibel, S., et al., Atrial fibrillation in endurance-trained athletes, Br. J. Sports Med., 2011, no. 45, p. 185.

  72. Stirbys, P., How much exercise is too much, J. Atrial. Fibrillation, 2013, no. 5, p. 5.

  73. Morseth, B., Graff-Iversen, S., and Jacobsen, B.K., Physical activity, resting heart rate, and atrial fibrillation: the Tromso Study, Eur. Heart J., 2016, vol. 37, no. 29, p. 2307.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Baldesberger, S., Bauersfeld, U., Candinas, R., et al., Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists, Eur. Heart J., 2008, no. 29, p. 71.

  75. Verdile, L., Maron, B.J., Pelliccia, A., et al., Clinical significance of exercise-induced ventricular tachyarrhythmias in trained athletes without cardiovascular abnormalities, Heart Rhythm, 2015, no. 12, p. 78.

  76. Biffi, A., Pelliccia, A., Verdile, L., et al., Long-term clinical significance of frequent and complex ventricular tachyarrhythmias in trained athletes, J. Am. Coll. Cardiol., 2002, vol. 3, no. 40, p. 446.

    Article  Google Scholar 

  77. Cipriani, A., Zorzi, A., Sarto, P., et al., Predictive value of exercise testing in athletes with ventricular ectopy evaluated by cardiac magnetic resonance, Heart Rhythm, 2019, vol. 16, no. 2, p. 239.

    Article  PubMed  Google Scholar 

  78. Heidbuchel, H., Hoogsteen, J., Fagard, R., et al., High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias: role of an electrophysiologic study in risk stratification, Eur. Heart J., 2003, vol. 24, no. 16, p. 1473.

    Article  PubMed  Google Scholar 

  79. Sawant, A.C., Bhonsale, A., Riele, A.S., et al., Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations, J. Am. Heart Assoc., 2014, vol. 3, no. 6, p. e001471.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zaidi, A., Sheikh, N., Jongman, J.K., et al., Clinical differentiation between physiological remodeling and arrhythmogenic right ventricular cardiomyopathy in athletes with marked electrocardiographic repolarization anomalies, J. Am. Coll. Cardiol., 2015, vol. 65, no. 25, p. 2702.

    Article  PubMed  Google Scholar 

  81. Chatterjee, D., Fatah, M., Akdis, D., Spears, D.A., et al., An autoantibody identifies arrhythmogenic right ventricular cardiomyopathy and participates in its pathogenesis, Eur. Heart J., 2018, vol. 39, no. 44, p. 3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leischik, R., Dworrak, B., Strauss, M., et al., Exercise-induced right ventricular injury or arrhythmogenic cardiomyopathy (ACM): the bright side and the dark side of the moon, Prog. Cardiovasc. Dis., 2020, vol.63, no. 5, p. 671.

    Article  PubMed  Google Scholar 

  83. La Gerche, A., Exercise-induced arrhythmogenic (right ventricular) cardiomyopathy is real…if you consider it, JACC: Cardiovasc. Imaging, 2021, vol. 14, no. 1, p. 159.

    PubMed  Google Scholar 

  84. Stadiotti, I., Lippi, M., Maione, A.S., et al., Cardiac biomarkers and autoantibodies in endurance athletes: potential similarities with arrhythmogenic cardiomyopathy pathogenic mechanisms, Int. J. Mol. Sci., 2021, vol. 22, no. 12, p. 6500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. La Gerche, A., Burns, A.T., Mooney, D.J., et al., Exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes, Eur. Heart. J., 2012, no. 33, p. 998.

  86. Middleton, N., Shave, R., George, K., et al., Left ventricular function immediately following prolonged exercise: a meta-analysis, Med. Sci. Sports Exercise, 2006, vol. 38, no. 4, p. 681.

    Article  Google Scholar 

  87. Nottin, S., Menetrier, A., Rupp, T., et al., Role of left ventricular untwisting in diastolic dysfunction after long duration exercise, Eur. J. Appl. Physiol., 2012, vol. 112, no. 2, p. 525.

    Article  PubMed  Google Scholar 

  88. Shave, R. and Oxborough, D., Exercise-induced cardiac injury: evidence from novel imaging techniques and highly sensitive cardiac troponin assays, Prog. Cardiovasc. Dis., 2012, no. 54, p. 407.

  89. Christensen, D.L., Espino, D., Infante-Ramírez, R., et al., Transient cardiac dysfunction but elevated cardiac and kidney biomarkers 24 h following an ultra-distance running event in Mexican Tarahumara, Extreme Physiol. Med., 2017, vol. 6, p. 3.

    Article  Google Scholar 

  90. Vitiello, D., Boissiere, J., Doucende, G., and Gayrard, S., Beta-adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger, J. Appl. Physiol., 2011, no. 111, p. 1242.

  91. Le Meur, Y., Louis, J., Aubry, A., et al., Maximal exercise limitation in functionally overreached triathletes: role of cardiac adrenergic stimulation, J. Appl. Physiol., 2014, vol. 117, no. 3, p. 214.

    Article  PubMed  Google Scholar 

  92. Eijsvogels, M.H., Fernandez, A.B., and Thompson, P.D., Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol. Rev., 2016, vol. 96, no. 1, p. 99.

    Article  PubMed  Google Scholar 

  93. Eijsvogels, T.M., Oxborough, D.L., O’Hanlon, R., et al., Global and regional cardiac function in lifelong endurance athletes with and without myocardial fibrosis, Eur. J. Sport Sci., 2017, no. 17, p. 1297.

  94. Eijsvogels, T.M., Thompson, P.D., and Franklin, B.A., The “Extreme Exercise Hypothesis”: recent findings and cardiovascular health implications, Curr. Treat. Options Cardiovasc. Med., 2018, vol. 10, no. 20, p. 84.

    Article  Google Scholar 

  95. Malek, L.A. and Bucciarelli-Ducci, C., Myocardial fibrosis in athletes—current perspective, Clin. Cardiol., 2020, vol. 8, no. 43, p. 882.

    Article  Google Scholar 

  96. Merghani, A., Maestrini, V., Rosmini, S., et al., Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile, Circulation, 2017, vol. 136, no. 2, p. 126.

    Article  CAS  PubMed  Google Scholar 

  97. Tahir, E., Starekova, J., Muellerleile, K., et al., Myocardial fibrosis in competitive triathletes detected by contrast-enhanced CMR correlates with exercise-induced hypertension and competition history, JACC Cardiovasc. Imaging, 2017, vol. 11, no. 9, p. 1260.

    Article  PubMed  Google Scholar 

  98. Van de Schoor, F.R., Aengevaeren, V.L., Hopman, M.T., et al., Myocardial fibrosis in athletes, Mayo Clinic Proc., 2016, vol. 91, no. 11, p. 1617.

    Article  Google Scholar 

  99. Breuckmann, F., Mohlenkamp, S., Nassenstein, K., et al., Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners, Radiology, 2009, vol. 251, no. 1, p. 50.

    Article  PubMed  Google Scholar 

  100. Shavit, R., Glikson, M., and Constantini, N., Athletes heart—the more the merrier? Harefuah, 2016, vol. 155, no. 9, p. 531.

    PubMed  Google Scholar 

  101. Carbone, A., D’Andrea, A., Riegler, L., et al., Cardiac damage in athlete’s heart: when the “supernormal” heart fails! World J. Cardiol. 2017, vol. 9, no. 6, p. 470.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Poussel, M., Djaballah, K., Laroppe, J., et al., Left ventricle fibrosis associated with nonsustained ventricular tachycardia in an elite athlete: is exercise responsible? A case report, J. Athletic Train., 2012, vol. 47, no. 2, p. 224.

    Article  Google Scholar 

  103. Benito, B., Gay-Jordi, G., Serrano-Mollar, A., et al., Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training, Circulation, 2011, no. 123, p. 13.

  104. Sarvari, S.I., Haugaa, K.H., Anfinsen, O.G., et al., Right ventricular mechanical dispersion is related to malignant arrhythmias: a study of patients with arrhythmogenic right ventricular cardiomyopathy and subclinical right ventricular dysfunction, Eur. Heart J., 2011, vol. 32, no. 9, p. 1089.

    Article  PubMed  Google Scholar 

  105. La Gerche, A., Robberecht, C., Kuiperi, C., et al., Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin, Heart, 2010, vol. 96, no. 16, p. 1268.

    Article  CAS  PubMed  Google Scholar 

  106. Schnell, F., Claessen, G., La Gerche, A., et al., Subepicardial delayed gadolinium enhancement in asymptomatic athletes: let sleeping dogs lie? Br. J. Sports Med., 2016, vol. 50, no. 2, p. 111.

    Article  PubMed  Google Scholar 

  107. Venlet, J., Piers, S.R., Jongbloed, J.D., et al., Isolated subepicardial right ventricular outflow tract scar in athletes with ventricular tachycardia, J. Am. Coll. Cardiol., 2017, vol. 69, no. 5, p. 497.

    Article  PubMed  Google Scholar 

  108. Zorzi, A., Perazzolo Marra, M., Rigato, I., et al., Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes, Circ. Arrhythm. Electrophysiol., 2016, vol. 9, no. 7, p. e004229.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lie, O.H., Klaboe, L.G., Dejgaard, L.A., et al., Cardiac phenotypes and markers of adverse outcome in elite athletes with ventricular arrhythmias, J. Am. Coll. Cardiol. Imaging, 2021, 14, no. 1, p. 148.

    Article  Google Scholar 

  110. Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., et al., Reactive oxygen species in metabolic and inflammatory signaling, Circ. Res., 2018, vol. 122, no. 6, p. 877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lazzerini, P.E., Capecchi, P.L., El-Sherif, N., et al., Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies, J. Am. Heart Assoc., 2018, vol. 7, no. 22, p. e010595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brosnan, M.J. and Rakhit, D., Differentiating athlete’s heart from cardiomyopathies—the left side, Heart Lung Circ., 2018, vol. 27, no. 9, p. 1052.

    Article  PubMed  Google Scholar 

  113. Prior, D., Differentiating athlete’s heart from cardiomyopathies—the right side, Heart Lung Circ., 2018, vol. 27, no. 9, p. 1063.

    Article  PubMed  Google Scholar 

  114. D’Ascenzi, F., Anselmi, F., Adami, P., and Pelliccia, P., Interpretation of T-wave inversion in physiological and pathological conditions: current state and future perspectives, Clin. Cardiol., 2020, vol. 43, no. 8, p. 827.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Motoki, N., Akazawa, Y., Hachiya, A., and Inaba, Y., Sudden improvement in ventricular repolarization abnormality after a short detraining period in an athlete, Cardiol. Young, 2017, vol. 27, no. 9, p. 1849.

    Article  PubMed  Google Scholar 

  116. Stein, R. and Malhotra, A., T wave inversions in athletes: a variety of scenarios, J. Electrocardiol., 2015, vol. 48, no. 3, p. 415.

    Article  PubMed  Google Scholar 

  117. Robles, A.G., Palamà, A.Z., Nesti, M., et al., Sport related sudden death: the importance of primary and secondary prevention, J. Clin. Med., 2022, vol. 11, no. 16, p. 4683.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Igoshev, M.V., On the issue of studying morbidity (using the example of a study on the frequency of ECG signs of myocardial dystrophy in athletes subject to follow-up care), Vestn. Nauchn. Konf., 2016, vol. 7, nos. 3–6 (7), p. 48.

  119. Makarov, L.M., Fedina, N.N., and Komolyatova, V.N., Changes in repolarization indicators in young athletes upon exercise dosing, Med. Alfavit, 2016, vol. 1, no. 11, p. 14.

    Google Scholar 

  120. Sheikh, N., Papadakis, P., Wilson, M.M., et al., Diag-nostic yield of genetic testing in young athletes with T-wave inversion, Circulation, 2018, vol. 13, no. 12, p. 1184.

    Article  Google Scholar 

  121. Garganeeva, N.P., Taminova, I.F., and Vorozhtsova, I.N., Electrocardiographic control for cardiovascular system in athletes at precompetition training, Ross. Kardiol. Zh, 2017, vol. 22, no. 12, p. 36. https://doi.org/10.15829/1560-4071-2017-12-36-40

    Article  Google Scholar 

  122. Chetverikova, L.M., Bobushova, G.S., and Sabirov, I.S., Adaptive capabilities of the cardiovascular system in high-class wrestlers of Kyrgyz nationality against the background of physical overexertion, Vestn. Kyrgyz.-Ross. Slavyanskogo Univ, 2018, vol. 18, no. 2, p. 166.

    Google Scholar 

  123. Kuznetsova, I.A., Neurohumoral regulation of heart rate upon different electrocardiographic manifestations of chronic physical overexertion in athletes, Sovrem. Vopr. Biomed., 2018, vol. 2, no. 1, p. 2.

    Google Scholar 

  124. La Gerche, A. and Heidbuchel, H., Can intensive exercise harm the heart? You can get too much of a good thing, Circulation, 2014, vol. 130, no. 12, p. 992.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Gavrilova.

Ethics declarations

CONFLICT OF INTEREST

The author of this work declares that she has no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Deryabina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Athlete’s Heart. Current problems of Sports Cardiology: Monograph / E.A. Gavrilova. M.: Sport, 2022. 432 p. ISBN 978-5-907225-99-2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilova, E.A. Pathological Athlete’s Heart. Hum Physiol 49 (Suppl 1), S80–S95 (2023). https://doi.org/10.1134/S0362119723700585

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723700585

Keywords:

Navigation