Skip to main content
Log in

Changes in the Functions and Architecture of Human Skeletal Muscles during 21-Day Unloading of the Locomotor System without Physical Exercise

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

A study was perform to check the hypothesis that significant alterations in the architecture of antigravity muscles and structural changes in postural muscles may result from overall lack of physical activity during dry immersion (DI) in water. Ten men (age 24.5 ± 3.9 years, body length 176.1 ± 1.2 m, body weight 71.1 ± 3.4 kg (mean ± SE)) volunteered for the study and underwent physical unloading of the locomotor system via DI for 21 days. Physical exercise was not used during exposure to DI. Contractile properties (maximum voluntary contraction (MVC) and force–velocity relationship) of ankle extensors and ankle flexors were evaluated using an isokinetic dynamometer. The internal architecture of two heads (the medial (MG) and lateral (LG) gastrocnemius muscles) of the triceps surae muscle was determined by in vivo ultrasound (US) at ankle angles of –15° (dorsiflexion), 0° (neutral anatomical position), and +30° (plantarflexion) and a knee angle of 180°. In each position, longitudinal USs of MG and LG were obtained at the proximal levels corresponding to 30% (MG and LG) of the distance between the popliteal crease and the center of the lateral malleolus. US images were obtained at rest for each ankle position, and the fiber length (Lf) and pennation angle (Θf) relative to the aponeurosis were determined. DI decreased the MVC of ankle extensors from 122.6 ± 43.1 to 99.5 ± 22.7 N (19%), while no significant change was observed for ankle flexors. With the ankle angle increasing from –15° to +30°, Lf changed from 43 ± 1 to 32 ± 2 mm (25.6%, p < 0.01) in MG and from 45 ± 2 to 34 ± 1 mm (24.4%, p < 0.01) in LG, and Θf increased from 21° ± 1° to 26° ± 2° (23.8%) in MG and from 14° ± 1° to 18° ± 2° (28.6%) in LG. The finding made it possible to assume that the architecture and contractile capacity of human pennate muscles are interrelated in vivo. Greater deterioration of antigravity MG compared with LG was presumably related to the difference in relative load that the muscles possibly experience during daily activities. Different Lf and Θf and their different changes after unloading might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. Structural muscle changes were considered as an adaptive process that arises in response to disuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. A continuous test on a cycle ergometer was performed with a load increasing in a stepwise manner at a constant pedaling rate of 60 rpm and an initial power of 50 W for 3 min. The power was then increased by 25 W at each step. The test was continued until a submaximal heart rate (HR) was achieved.

REFERENCES

  1. Baker, E.S., Barratt, M.R., and Wear, M.L., Human response to space flight, Principles of Clinical Medicine for Space Flight, Barratt, M.R., Baker, E.S., and Pool, S.L., Eds., New York: Springer-Verlag, 2019, p. 367.

    Google Scholar 

  2. Ploutz-Snyder, L., Ryder, J., English, K., and Haddad, F.K.B., Evidence Report: Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance, HRP 47072, Houston, Texas: NASA Lyndon B. Johnson Space Center, 2015.

  3. Sibonga, J.D., Cavanagh, P.R., Lang, T.F., et al., Adaptation of the skeletal system during long-duration spaceflight, Clin. Rev. Bone Min. Metab., 2008, vol. 5, p. 249.

    Article  Google Scholar 

  4. Vico, L., Collet, P., Guignandon, A., et al., Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts, Lancet, 2000, vol. 355, no. 9215, p. 1607.

    Article  CAS  PubMed  Google Scholar 

  5. Adams, G.R., Caiozzo, V.J., and Baldwin, K.M., Skeletal muscle unweighting: spaceflight and ground-based models, J. Appl. Physiol., 2003, vol. 95, no. 6, p. 2185.

    Article  PubMed  Google Scholar 

  6. Capelli, C., Antonutto, G., Kenfack, M.A., et al., Factors determining the time course of VO2(max) decay during bedrest: implications for VO2(max) limitation, Eur. J. Appl. Physiol., 2006, vol. 98, no. 2, p. 152.

    Article  CAS  PubMed  Google Scholar 

  7. Ferretti, G., Berg, H.E., Minetti, A.E., et al., Maximal instantaneous muscular power after prolonged bed rest in humans, J. Appl. Physiol., 2001, vol. 90, no. 2, p. 431.

    Article  CAS  PubMed  Google Scholar 

  8. Rittweger, J., Felsenberg, D., Maganaris, C.N., and Ferretti, J.L., Vertical jump performance after 90 days bed rest with and without flywheel resistive exercise, including a 180 days follow-up, Eur. J. Appl. Physiol., 2007, vol. 100, no. 4, p. 427.

    Article  PubMed  Google Scholar 

  9. Blaber, A.P., Goswami, N., Bondar, R.L., and Kassam, M.S., Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight, Stroke, 2011, vol. 42, no. 7, p. 1844.

    Article  PubMed  Google Scholar 

  10. Mader, T.H., Gibson, C.R., Pass, A.F., et al., Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight, Ophthalmology, 2011, vol. 118, no. 10, p. 2058.

    Article  PubMed  Google Scholar 

  11. Kawakami, Y., Akima, H., Kubo, K., et al., Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise, Eur. J. Appl. Physiol., 2001, vol. 84, nos. 1—2, p. 7.

    Article  CAS  PubMed  Google Scholar 

  12. Kubo, K., Akima, H., Kouzaki, M., et al., Changes in the elastic properties of tendon structures following 20 days bed-rest in humans, Eur. J. Appl. Physiol., 2000, vol. 83, no. 6, p. 463.

    Article  CAS  PubMed  Google Scholar 

  13. LeBlanc, A., Gogia, P., Schneider, V., et al., Calf muscle area and strength changes after five weeks of horizontal bed rest, Am. J. Sport Med., 1988, vol. 16, no. 6, p. 624.

    Article  CAS  Google Scholar 

  14. Antonutto, G., Capelli, C., Girardis, M., et al., Effects of microgravity on maximal power of lower limbs during very short efforts in humans, J. Appl. Physiol., 1999, vol. 86, no. 1, p. 85.

    Article  CAS  PubMed  Google Scholar 

  15. Duchateau, J., Bed rest induces neural and contractile adaptations in triceps surae, Med. Sci. Sports Exerc., 1995, vol. 27, no. 12, p. 1581.

    CAS  PubMed  Google Scholar 

  16. Koryak, Yu., Electromyographic study of the contractile and electrical properties of the human triceps surae muscle in a simulated microgravity environment, J. Physiol., 1988, vol. 510, part 1, p. 287.

    Article  Google Scholar 

  17. Ruegg, D.G., Kakebeeke, T.H., Gabriel, J.P., and Bennefeld, M., Conduction velocity of nerve and muscle fiber action potentials after a space mission or a bed rest, Clin. Neurophysiol., 2003, vol. 114, no. 1, p. 86.

    Article  PubMed  Google Scholar 

  18. Fitts, R.H., Romatowski, J.G., Peters, J.R., et al., The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation, Am. J. Physiol. Cell Physiol., 2007, vol. 293, no. 1, p. C313.

    Article  CAS  PubMed  Google Scholar 

  19. Trappe, S., Trappe, T., Gallagher, P., et al., Human single muscle fibre function with 84 day bed-rest and resistance exercise, J. Physiol., 2004, vol. 557, part 2, p. 501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. De Boer, M.D., Maganaris, C.N., Seynnes, O.R., et al., Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men, J. Physiol., 2007, vol. 583, pt. 3, p. 1079.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Koryak, Yu., Influence of simulated microgravity on mechanical properties in the human triceps surae muscle in vivo: I. Effect of 120 days of bed‑rest without physical training on human muscle musculo‑tendinous stiffness and contractile properties in young women, Eur. J. Appl. Physiol., 2014, vol. 114, no. 5, p. 1025.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Koryak, Yu., Influence of simulated microgravity on mechanical properties in the human triceps surae muscle in vivo: II. Effect of 120 days of bed-rest with physical training on human muscle contractile properties and musculo-tendinous stiffness in young women, Cent. Eur. J. Sport Sci. Med., 2015, vol. 11, no. 3, p. 125.

    Google Scholar 

  23. Maganaris, C.N., Reeves, N.D., Rittweger, J., et al., Adaptive response of human tendon to paralysis, Muscle Nerve, 2006, vol. 33, no. 1, p. 85.

    Article  PubMed  Google Scholar 

  24. LeBlanc, A., Lin, C., Shackelford, L., et al., Muscle volume, MRI relaxation times (T2), and body composition after spaceflight, J. Appl. Physiol., 2000, vol. 89, no. 6, p. 2158.

    Article  CAS  PubMed  Google Scholar 

  25. Tesch, P.A., Berg, H.E., Bring, D., et al., Effects of 17-day spaceflight on knee extensor muscle function and size, Eur. J. Appl. Physiol., 2005, vol. 93, no. 4, p. 463.

    Article  PubMed  Google Scholar 

  26. Narici, M. and Cerretelli, P., Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging, J. Gravit. Physiol., 1998, vol. 5, no. 1, p. P73.

    CAS  PubMed  Google Scholar 

  27. Sargeant, A.J., Davies, C.T., Edwards, R.H., et al., Functional and structural changes after disuse of human muscle, Clin. Sci. Mol. Med., 1977, vol. 52, no. 4, p. 337.

    CAS  PubMed  Google Scholar 

  28. Akima, H., Kubo, K., Imai, M., et al., Inactivity and muscle: effect of resistance training during bed rest on muscle size in the lower limb, Acta Physiol. Scand., 2001, vol. 172, no. 4, p. 269.

    Article  CAS  PubMed  Google Scholar 

  29. Alkner, B.A. and Tesch, P.A., Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest, Acta Physiol. Scand., 2004, vol. 181, no. 3, p. 345.

    Article  CAS  PubMed  Google Scholar 

  30. Reeves, N.J., Maganaris, C.N., Ferretti, G., and Narici, M.V., Influence of simulated microgravity on human skeletal muscle architecture and function, J. Gravit. Physiol., 2002, vol. 9, no. 1, p. 153.

    Google Scholar 

  31. di Prampero, P.E. and Narici, M.V., Muscles in microgravity: from fibres to human motion, J. Biomech., 2003, vol. 36, no. 3, p. 403.

    Article  PubMed  Google Scholar 

  32. Blazevich, A.J., Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry, Sports Med., 2006, vol. 36, no. 12, p. 1003.

    Article  PubMed  Google Scholar 

  33. Blazevich, A.J., Cannavan, D., Coleman, D.R., and Horne, S., Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles, J. Appl. Physiol., 2007, vol. 103, no. 5, p. 1565.

    Article  PubMed  Google Scholar 

  34. Lynn, R. and Morgan, D.L., Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running, J. Appl. Physiol., 1994, vol. 77, no. 3, p. 1439.

    Article  CAS  PubMed  Google Scholar 

  35. Noorkoiv, M., Nosaka, K., and Blazevich, A.J., Neuromuscular adaptations associated with knee joint angle-specific force change, Med. Sci. Sports Exerc., 2014, vol. 46, no. 8, p. 1525.

    Article  PubMed  Google Scholar 

  36. Reeves, N.D., Maganaris, C.N., Longo, S., and Narici, M.V., Differential adaptations to eccentric versus conventional resistance training in older humans, Exp. Physiol., 2009, vol. 94, no. 7, p. 825.

    Article  PubMed  Google Scholar 

  37. Koryak, Yu., Influence of long-duration space flight on human skeletal muscle architecture and function: a pilot study, Am. Sci. J., 2016, no. 5, p. 7.

  38. Koryak, Yu.A., Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity, J. Appl. Physiol., 2019, vol. 126, no. 4, p. 880.

    Article  CAS  PubMed  Google Scholar 

  39. Koryak, Yu.A., Changes in human skeletal muscle architecture and function induced by extended spaceflight, J. Biomech., 2019, vol. 97, p. 109408.

    Article  PubMed  Google Scholar 

  40. Koryak, Yu.A., Kuz’mina, M.M., Berezhinskii, I.V., and Kovalenko, V.M., Long-term electromyostimulation training of muscles in humans under conditions of mechanical unloading of the motor apparatus and its effect on the architecture and function of the triceps muscle of the leg, Fundam. Issled., 2010, no. 3, p. 68.

  41. Gans, C. and Bock, W.J., The functional significance of muscle architecture—a theoretical analysis, Ergeb. Anat. Entwicklungsgesch. 1965, vol. 38, p. 115.

    CAS  PubMed  Google Scholar 

  42. Gans, C. and Gaunt, A.S., Muscle architecture in relation to function, J. Biomech., 1991, vol. 24, suppl. 1, p. 53.

    Article  PubMed  Google Scholar 

  43. Maganaris, C.N., Baltzopoulos, V., and Sargeant, A.J., Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: observations in man, J. Physiol., 1998, vol. 510, part 3, p. 977.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Friederich, J.A. and Brand, R.A., Muscle fiber architecture in the human lower limb, J. Biomech., 1990, vol. 23, no. 1, p. 91.

    Article  CAS  PubMed  Google Scholar 

  45. Shul’zhenko E.B. and Will-Williams, I.F., Possibility of carrying out prolonged water immersion by the method of “dry” submersion, Kosm. Biol. Aviakosm. Med., 1976, vol. 10, no. 2, p. 82.

    PubMed  Google Scholar 

  46. Brown, L.E. and Weir, J.P., ASEP procedures recommendation: I. Accurate assessment of muscular strength and power, J. Exerc. Physiol. Online, 2001, vol. 4, no. 3, p. 1.

    Google Scholar 

  47. Kawakami, Y., Ichinose, Y., and Fukunaga, T., Architectural and functional features of human triceps surae muscles during contraction, J. Appl. Physiol., 1998, vol. 85, no. 2, p. 398.

    Article  CAS  PubMed  Google Scholar 

  48. Fukunaga, T., Roy, R.R., Shellock, F.G., et al., Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging, J. Orthop. Res., 1992, vol. 10, no. 6, p. 926.

    Article  Google Scholar 

  49. Berg, H.E., Tedner, B., and Tesch, P.A., Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine, Acta Physiol. Scand., 1993, vol. 148, no. 4, p. 379.

    Article  CAS  PubMed  Google Scholar 

  50. Csapo, R., Alegre, L.M., and Baron, R., Time kinetics of acute changes in muscle architecture in response to resistance exercise, J. Sci. Med. Sport., 2011, vol. 14, no. 3, p. 270.

    Article  PubMed  Google Scholar 

  51. Ando, R., Taniguchi, K., Saito, A., et al., Validity of fascicle length estimation in the vastus lateralis and vastus intermedius using ultrasonography, J. Electromyog. Kinesiol., 2014, vol. 24, no. 2, p. 214.

    Article  Google Scholar 

  52. Finni, T., Ikegaw, Sh., Lepola, V., and Komi, P., In vivo behavior of vastus lateralis muscle during dynamic performances, Eur. J. Sport Sci., 2001, vol. 1, no. 1, p. 1.

    Article  Google Scholar 

  53. Reeves, N.D., Narici, M.V., and Maganaris, C.N., Effect of resistance training on skeletal muscle-specific force in elderly humans, J. Appl. Physiol., 2004, vol. 96, no. 3, p. 885.

    Article  CAS  PubMed  Google Scholar 

  54. Blazevich, A.J., Gil, N.D., and Zhou, Sh., Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo, J. Anat., 2006, vol. 209, no. 3, p. 289.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Narici, M.V., Binzoni, T., Hiltbrand, E., et al., Human gastrocnemius muscle architecture from rest to the contracted state, J. Physiol., 1994, vol. 475, p. 17.

    Google Scholar 

  56. Narici, M.V., Landoni, L., and Minetti, A.E., Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurement, Eur. J. Appl. Physiol., 1992, vol. 65, no. 5, p. 438.

    Article  CAS  Google Scholar 

  57. Reeves, N.D. and Narici, M.V., Behavior of human muscle fascicles during shortening and lengthening contractions in vivo, J. Appl. Physiol., 2003, vol. 95, no. 3, p. 1090.

    Article  PubMed  Google Scholar 

  58. Murray, M.P., Guten, G.N., Baldwin, J.M., and Gardner, G.M., A comparison of plantar flexion torque with and without the triceps surae, Acta Orthop. Scand., 1976, vol. 47, no. 1, p. 122.

    Article  CAS  PubMed  Google Scholar 

  59. Grigor’eva, L.S. and Kozlovskaya, I.B., The effect of seven-day support unloading on the force-velocity properties of skeletal muscles, Kosm. Biol. Aviakosm. Med., 1983, vol. 17, no. 4, p. 21.

    PubMed  Google Scholar 

  60. Grigor’eva, L.S. and Kozlovskaya, I.B., The effect of weightlessness and hypokinesia on the force-velocity properties of human muscles, Kosm. Biol. Aviakosm. Med.,1987, vol. 21, no. 1, p. 27.

    Google Scholar 

  61. Grigor’eva, L.S. and Kozlovskaya, I.B., Comparative analysis of the effects of weightlessness and its models on the force-velocity properties and tone of human skeletal muscles, Kosm. Biol. Aviakosm. Med., 1984, vol. 18, no. 6, p. 22.

    PubMed  Google Scholar 

  62. Koryak, Yu., Electrically evoked and voluntary properties of the human triceps surae muscle: effects of long-term spaceflights, Acta Physiol. Pharmacol. Bulg., 2001, vol. 26, nos. 1–2, p. 21.

    CAS  PubMed  Google Scholar 

  63. Koryak, Yu.A., Nervno-myshechnaya adaptatsiya k kratkovremennym i prodolzhitel’nym kosmicheskim poletam cheloveka (Neuromuscular Adaptation to Short-Duration and Long-Duration Human Space Flights), Grigor’ev, A.I. and Ushakov, I.B., Moscow: Inst. Med. Biol. Problem Ross. Akad. Nauk, 2011, vol. 2, p. 93.

    Google Scholar 

  64. Mart’yanov, V.A., The degree of utilization of the force-velocity capabilities of the neuromuscular apparatus during voluntary exertion, Fiziol. Zh. SSSR im. I. M. Sechenova, 1974, vol. 60, no. 9, p. 1416.

    Google Scholar 

  65. Mart’yanov, V.A., Kopylov, Yu.A., and Gnutov, M.I., The degree of utilization of the capabilities of the muscular apparatus at maximum voluntary exertion, Fiziol. Zh. SSSR im. I. M. Sechenova, 1972, vol. 58, p. 1390.

    Google Scholar 

  66. Mart’yanov, V.A., and Koryak, Yu.A., The increase in voluntary strength under the action of additionally evoked afferent influences, Fiziol. Zh. SSSR im. I.M. Sechenova, 1973, vol. 59, p. 1756.

    Google Scholar 

  67. Ploutz-Snyder, L.L., Tesch, P.A., Crittenden, D.J., and Dudley, G.A., Effect of unweighting on skeletal muscle use during exercise, J. Appl. Physiol., 1995, vol. 79, no. 1, p. 168.

    Article  CAS  PubMed  Google Scholar 

  68. Tesch, P.A., Trieschmann, J.T., and Ekberg, A., Hypertrophy of chronically unloaded muscle subjected to resistance exercise, J. Appl. Physiol., 2004, vol. 96, no. 4, p. 1451.

    Article  CAS  PubMed  Google Scholar 

  69. Koryak, Yu., Contractile properties of the human triceps surae muscle during simulated weightlessness, Eur. J. Appl. Physiol., 1995, vol. 70, no. 4, p. 344.

    Article  CAS  Google Scholar 

  70. Trappe, S., Trappe, T., Gallagher, P., et al., Human single muscle fibre function with 84 day bed-rest and resistance exercise, J. Physiol., 2004, vol. 557, pt. 2, p. 501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Widrick, J.J., Knuth, S.T., Norenberg, K.M., et al., Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres, J. Physiol., 1999, vol. 516, part 3, p. 915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Narici, M.V. and Maganaris, C.N., Adaptability of elderly human muscles and tendons to increased loading, J. Anat., 2006, vol. 208, no. 4, p. 433.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Koryak, Yu.A., Prolonged exposure to weightlessness and its effect on the mechanical properties of the triceps calf muscle in humans: electromechanical delay and musculotendinous stiffness, Usp. Sovremen. Estestvozn., 2012, no. 8, p. 41.

  74. Alexander, R.McN. and Vernon, A., The dimensions of knee and ankle muscles and the forces they exert, J. Hum. Mov. Stud., 1975, vol. 1, p. 115.

    Google Scholar 

  75. Rutherford, O.M., and Jones, D.A., Measurement of fibre pennation using ultrasound in the human quadriceps in vivo, Eur. J. Appl. Physiol., 1992, vol. 65, no. 5, p. 433.

    Article  CAS  Google Scholar 

  76. Ikegawa, S., Funato, K., Tsunoda, N., et al., Muscle force per cross-sectional area is inversely related with pennation angle in strength trained athletes, J. Strength Cond. Res., 2008, vol. 22, no. 1, p. 128.

    Article  PubMed  Google Scholar 

  77. Ranatunga, K.W., Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle, J. Physiol., 1982, vol. 329, p. 465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Narici, M.V. and Maganaris, C.N., Plasticity of the muscle-tendon complex with disuse and aging, Exerc. Sport Sci. Rev., 2007, vol. 35, no. 3, p. 126.

    Article  PubMed  Google Scholar 

  79. Chino, K., Oda, T., Kurihara T., et al., In vivo fascicle behavior of synergistic muscles in concentric and eccentric plantar flexions in humans, J. Electromyogr. Kinesiol., 2008, vol. 18, no. 1, p. 79.

    Article  PubMed  Google Scholar 

  80. Huijing, P.A., Yaman, A., Ozturk, C., and Yucesoy, C.A., Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles, Surg. Radiol. Anat., 2011, vol. 33, no. 10, p. 869.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Johnson, M.A., Polgar, J., Weightman, D., and Appleton, D., Data on the distribution of fibre types in thirty-six human muscles: an autopsy study, J. Neurol. Sci., 1973, vol. 18, no. 1, p. 111.

    Article  CAS  PubMed  Google Scholar 

  82. Ward, S.R., Eng, C.M., Smallwood, L.H., and Lieber, R.L., Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res., 2009, vol. 467, no. 4, p. 1074.

    Article  PubMed  Google Scholar 

  83. Bodine, S.C., Roy, R.R., Meadows, D.A., et al., Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus, J. Neurophysiol., 1982, vol. 48, no. 1, p. 192.

    Article  CAS  PubMed  Google Scholar 

  84. Gordon, A.M., Huxley, A.F., and Julian, F.J., The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J. Physiol., 1966, vol. 184, no. 1, p. 170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Huijing, P.A., Architecture of the human gastrocnemius muscle and some functional consequences, Acta Anat., 1985, vol. 123, no. 2, p. 101.

    Article  CAS  PubMed  Google Scholar 

  86. Walker, S.M. and Schrodt, G.R., I-segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human, Anat. Rec., 1974, vol. 178, no. 1, p. 63.

    Article  CAS  PubMed  Google Scholar 

  87. Wickiewicz, T.L., Roy, R.R., Powell, P.L., and Edgerton, V.R., Muscle architecture of the human lower limb, Clin. Orthop. Relat. Res., 1983, vol. 179, p. 275.

  88. Out, L., Vrijkotte, T.G., van Soest, A.J., and Bobbert, M.F., Influence of the parameters of a human triceps surae muscle model on the isometric torque-angle relationship, J. Biomech. Eng., 1996, vol. 118, no. 1, p. 17.

    Article  CAS  PubMed  Google Scholar 

  89. Woittiez, R.D., Rozendal, R.H., and Huijing, P.A., The functional significance of architecture of the human triceps surae muscle, Biomechanics, 1985, vol. IX-A, p. 21.

  90. Bobbert, M.F., Huijing, P.A., and van Ingen Schenau, G.J., A model of the human triceps surae muscle-tendon complex applied to jumping, J. Biomech. 1986, vol. 19, no. 11, p. 887.

    Article  CAS  PubMed  Google Scholar 

  91. Alexander, R.McN., Animal Mechanics, London: Sidgwick and Jackson, 1968.

    Google Scholar 

  92. Seynnes, O.R., Maganaris, C.N., de Boer, M.D., et al., Early structural adaptations to unloading in the human calf muscles, Acta Physiol., 2008, vol. 193, no. 3, p. 265.

    Article  CAS  Google Scholar 

  93. Kawakami, Y., Abe, T., and Fukunaga, T., Training-induced changes in muscle architecture and specific tension, Eur. J. Appl. Physiol., 1995, vol. 72, nos. 1—2, p. 37.

    Article  CAS  Google Scholar 

  94. Reeves, N.D., Maganaris, C.N., Ferretti, G., and Narici, M.V., Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures, J. Appl. Physiol., 2005, vol. 98, no. 6, p. 2278.

    Article  CAS  PubMed  Google Scholar 

  95. Farkas, G.A. and Roussos, C., Diaphragm in emphysematous hamsters: sarcomer adaptability, J. Appl. Physiol., 1983, vol. 54, no. 6, p. 1635.

    Article  CAS  PubMed  Google Scholar 

  96. Clément, G., Gurfinkel, V.S., and Lestienne, F., Mechanisms of posture maintenance in weightlessness, Vestibular and Visual Control on Posture and Locomotor Equilibrum, Black, I., Ed., Basel, Switzerland: Karger. 1985, p. 158.

    Google Scholar 

  97. Koryak, Yu.A., Influence of long-term space flight on mechanical properties of the human triceps surae muscle: electro mechanical delay and musculo-tendinous stiffness, J. Skeletal Muscle, 2017, vol. 1, no. 1, p. 10.

    Article  Google Scholar 

  98. Pandy, M.G. and Zajac, F.E., Optimal muscular coordination strategies for jumping, J. Biomech. 1991, vol. 24, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  99. Lieber, R.L. and Fridén, J., Functional and clinical significance of skeletal muscle architecture, Muscle Nerve, 2000, vol. 23, no. 11, p. 1647.

    Article  CAS  PubMed  Google Scholar 

  100. Aagaard, P., Andersen, J.L., Dyhre-Poulsen, P., et al., A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture, J. Physiol., 2001, vol. 534, pt. 2, p. 613.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Kubo, K., Akima, H., Ushiyama, J., et al., Effects of 20 days of bed rest on the viscoelastic properties of tendon structures in lower limb muscles, Br. J. Sports Med., 2004, vol. 38, no. 3, p. 324.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Maganaris, C.N., Reeves, N.D., Rittweger, J., et al., Adaptive response of human tendon to paralysis, Muscle Nerve., 2006, vol. 33, no. 1, p. 85.

    Article  PubMed  Google Scholar 

  103. Ferrando, A.A., Lane, H.W., Stuart, C.A., et al., Prolonged bed rest decreases skeletal muscle and whole body protein synthesis, Am. J. Physiol., 1996, vol. 270, no. 4, part 1, p. 627.

  104. Stein, T.P., Leskiw, M.J., Schluter, M.D., et al., Protein kinetics during and after long-duration spacefight on MIR, Am. J. Physiol., 1999, vol. 276, no. 6, part 1, p. E1014.

  105. Ferrando, A.A., Paddon-Jones, D., and Wolfe, R.R., Alterations in protein metabolism during spaceflight and inactivity, Nutrition, 2002, vol. 18, no. 10, p. 837.

    Article  CAS  PubMed  Google Scholar 

  106. Huijing, P.A. and Jaspers, R.T., Adaptation of muscle size and myofascial force transmission: a review and some new experimental results, Scand. J. Med. Sci. Sports, 2005, vol. 15, no. 6, p. 349.

    Article  CAS  PubMed  Google Scholar 

  107. De Boer, M.D., Selby, A., Atherton, P., et al., The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse, J. Physiol., 2007, vol. 585, pt. 1, p. 241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the study participants for their commitment and active participation, medical and engineering staff for organization of the study, and many colleagues for help in research.

Funding

This work was supported by the Ministry of Education and Science (agreement no. 075-1502020-919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Koryak.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments. The study was approved by the Ethics Committee at the Institute of Biomedical Problems (Moscow). Informed consent was provided by all individual participants involved in the study after being informed about potential risks and benefits and nature of the study.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koryak, Y.A., Kukoba, T.B. & Babich, D.R. Changes in the Functions and Architecture of Human Skeletal Muscles during 21-Day Unloading of the Locomotor System without Physical Exercise. Hum Physiol 49, 115–128 (2023). https://doi.org/10.1134/S036211972260045X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972260045X

Keywords:

Navigation