Skip to main content
Log in

Oxygen-Dependent Adaptation Processes in a Human Organism in Normal Living Conditions and during Space Flight

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review examines various parties of oxygen-dependent human adaptation to microgravity belonging to different levels of the integral system organization. Particular emphasis is placed on the cellular sensor-based systems of immediate and chronic reactions to altered O2 delivery. The authors describe the key oxygen sensors and heterogeneity of the oxygen-sensing mechanisms. Under consideration also is the role of O2 active forms and O2-sensing elements developing in the spaceflight (SF) environment. The first experimental data on an increase in the frequency of oxidative post-translational modifications of proteins caused by SF factors are presented. A hypothesis is proposed about the direction and possible systemic mechanisms of oxygen-dependent adaptation of the human body during SF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tauber, S., Christoffel, S., Thiel, C.S., and Ullrich, O., Transcriptional homeostasis of oxidative stress-related pathways in altered gravity, Int. J. Mol. Sci., 2018, vol. 19, no. 9, p. 2814. https://doi.org/10.3390/ijms19092814

    Article  CAS  Google Scholar 

  2. Burton, G.J. and Jauniaux, E., Oxidative stress, Best Pract. Res. Clin. Obstet. Gynaecol., 2011, vol. 25, p. 287. https://doi.org/10.1016/j.bpobgyn.2010.10.016

    Article  Google Scholar 

  3. Gregersen, N. and Bross, P., Protein misfolding and cellular stress: an overview, Methods Mol. Biol., 2010, vol. 648, p. 3. https://doi.org/10.1007/978-1-60761-756-3_1

    Article  CAS  Google Scholar 

  4. Geiszt, M., NADPH oxidases: new kids on the block, Cardiovasc. Res., 2006, vol. 71, p. 289. https://doi.org/10.1016/j.cardiores.2006.05.004

  5. Skulachev, V.P., Bogachev, A.V., and Kasparinsky, F.O., Membrannaya bioenergetika (Membrane Bioenergetics), Moscow: Mosk. Gos. Univ., 2010.

  6. Santore, M., McClintock, D., Lee, V., et al., Anoxia-induced apoptosis occurs through a mitochondria-dependent pathway in lung epithelial cells, Am. J. Physiol.: Lung Cell. Mol. Physiol., 2002, vol. 282, p. L727. https://doi.org/10.1152/ajplung.00281.2001

    Article  CAS  Google Scholar 

  7. Solaini, G., Baracca, A., Lenaz, G., and Sgarbi, G., Hypoxia and mitochondrial oxidative metabolism, Biochim. Biophys. Acta., 2010, vol. 1797, p. 1171. https://doi.org/10.1016/j.bbabio.2010.02.011

    Article  CAS  Google Scholar 

  8. Grigoriev, A.I., Summing-up cosmonaut participation in long-term space flights, Adv. Space Res., 1992, vol. 12, no. 1, p. 323. https://doi.org/10.1016/0273-1177(92)90300-m

    Article  CAS  Google Scholar 

  9. Blaber, E.A., Pecaut, M.J., and Jonscher, K.R., Spaceflight activates autophagy programs and the proteasome in mouse liver, Int. J. Mol. Sci., 2017, vol. 18, p. 2062. https://doi.org/10.3390/ijms18102062

    Article  CAS  Google Scholar 

  10. Anselm, V., Novikova, S., and Zgoda, V., Re-adaption on Earth after spaceflights affects the mouse liver, Proteome. Int. J. Mol. Sci., 2017, vol. 18, p. 1763. https://doi.org/10.3390/ijms18081763

    Article  CAS  Google Scholar 

  11. Goodwin, T.J. and Christofidou-Solomidou, M., Oxidative stress and space biology: an organ-based approach, Int. J. Mol. Sci., 2018, vol. 19, p. 959. https://doi.org/10.3390/ijms19040959

    Article  CAS  Google Scholar 

  12. Janeway, C.A., Travers, P., Walport, M., and Shlomchik, M.J., Immunobiology: the immune system in health and disease, in The Front Line of Host Defense, New York, 2001, 5th ed.

  13. Kuschel, A., Simon, P., and Tug, S., Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation? J. Cell Physiol., 2012, vol. 227, p. 514.

    Article  CAS  Google Scholar 

  14. Allan, E.R., Tailor, P., Balce, D.R., et al., NADPH oxidase modifies patterns of MHC class II restricted epitopic repertoires through redox control of antigen processing, J. Immunol., 2014, vol. 192, p. 4989. https://doi.org/10.4049/jimmunol.1302896

    Article  CAS  Google Scholar 

  15. Chen, F., Li, X., Aquadro, E., et al., Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension, Free Radic. Biol. Med., 2016, vol. 99, p. 167. https://doi.org/10.1016/j.freeradbiomed.2016.08.003

    Article  CAS  Google Scholar 

  16. Kim, H., Jung, Y., Shin, B.S., et al., Redox regulation of lipopolysaccharide-mediated sulfiredoxin induction, which depends on both AP-1 and Nrf2, J. Biol. Chem., 2010, vol. 285, p. 34419. https://doi.org/10.1074/jbc.M110.126839

    Article  CAS  Google Scholar 

  17. Morgan, M.J. and Liu, Z.G., Crosstalk of reactive oxygen species and NF-kappaB signaling, Cell Res., 2011, vol. 21, p. 103. https://doi.org/10.1038/cr.2010.178

    Article  CAS  Google Scholar 

  18. Weigert, A., von Knethen, A., Fuhrmann, D., et al., Redox-signals and macrophage biology, Mol. Aspects Med., 2018, vol. 63, p. 70. https://doi.org/10.1016/j.mam.2018.01.003

    Article  CAS  Google Scholar 

  19. Forman, H.J. and Torres, M., Signaling by the respiratory burst in macrophages, IUBMB Life, 2001, vol. 51, p. 365.

    Article  CAS  Google Scholar 

  20. Segal, A.W. and Peters, T.J., Characterization of the enzyme defect in chronic granulomatous disease, Lancet, 1976, vol. 1, p. 1363. https://doi.org/10.1016/S0140-6736(76)93021-X

    Article  CAS  Google Scholar 

  21. Johannes, V., Thiel, C.S., Tauber, S., et al., Expression of hypoxia-inducible factor 1α (HIF-1α) and genes of related pathways in altered gravity, Int. J. Mol. Sci., vol. 20, no. 2, p. 436.

  22. Taylor, C.T. and Cummins, E.P., The role of NF-κB in hypoxia-induced gene expression, Ann. N. Y. Acad. Sci., 2009, vol. 1177, p. 178.

    Article  CAS  Google Scholar 

  23. Semenza, G.L., Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy, Trends Pharmacol. Sci., 2012, vol. 33, p. 207. https://doi.org/10.1016/j.tips.2012.01.005

  24. Riboldi, E., Porta, C., Morlacchi, S., et al., Hypoxia-mediated regulation of macrophage functions in pathophysiology, Int. Immunol., 2013, vol. 25, p. 67. https://doi.org/10.1093/intimm.dxs110

  25. Acker, H., The oxygen sensing signal cascade under the influence of reactive oxygen species, Philos. Trans. R. Soc. Lond., B, 2005, vol. 360, no. 1464, p. 2201.

    Article  CAS  Google Scholar 

  26. Ullrich, V. and Schildknecht, S., Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation, Antioxid. Redox Signal., 2014, vol. 20, no. 2, p. 325.

    Article  CAS  Google Scholar 

  27. Streller, T., Huckstorf, C., Pfeiffer, C., and Acker, H., Unusual cytochrome a592 with low PO2 affinity correlates as putative oxygen sensor with rat carotid body chemoreceptor discharge, FASEB J., 2002, vol. 16, no. 10, p. 1277.

    Article  CAS  Google Scholar 

  28. Jones, R.D., Hancock, J.T., and Morice, A.H., NADPH oxidase: a universal oxygen sensor? Free Radic. Biol. Med., 2000, vol. 29, p. 416.

    Article  CAS  Google Scholar 

  29. Görlach, A., Berchner-Pfannschmidt, U., Wotzlaw, C., et al., Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1, Thromb. Haemostasis, 2003, vol. 89, p. 926.

    Article  Google Scholar 

  30. Hirsilä, M., Koivunen, P., Gunzler, V., et al., Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor, J. Biol. Chem., 2003, vol. 278, p. 30772.

    Article  Google Scholar 

  31. Lando, D., Pongratz, I., Poellinger, L., and Whitelaw, M.L., A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1alpha and the HIF-like factor, J. Biol. Chem., 2000, vol. 275, no. 7, p. 4618.

    Article  CAS  Google Scholar 

  32. Yamashita, K., Discher, D.J., Hu, J., et al., Molecular regulation of the endothelin-1 gene by hypoxia: contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, and p300/CBP, J. Biol. Chem., 2001, vol. 276, no. 16, p. 12645.

    Article  CAS  Google Scholar 

  33. Ruas, J.L., Poellinger, L., and Pereira, T., Role of CBP in regulating HIF-1-mediated activation of transcription, J. Cell Sci., 2005, vol. 118, part 2, p. 301.

    Article  CAS  Google Scholar 

  34. Welsh, S.J., Williams, R.R., Birmingham, A., et al., The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1 alpha and vascular endothelial growth factor formation, Mol. Cancer Ther., 2003, vol. 2, p. 235.

    CAS  Google Scholar 

  35. Acker, T. and Acker, H., Cellular oxygen sensing need in CNS function: physiological and pathological implications (review), J. Exp. Biol., 2004, vol. 207, p. 3171.

    Article  CAS  Google Scholar 

  36. Berchner-Pfannschmidt, U., Tug, S., Kirsch, M., and Fandrey, J., Oxygen-sensing under the influence of nitric oxide, J. Cell Signal., 2010, vol. 22, no. 3, p. 349.

    Article  CAS  Google Scholar 

  37. Berchner-Pfannschmidt, U., Wotzlaw, C., Merten, E., et al., Visualization of the three-dimensional organization of hypoxia-inducible factor-1 alpha and interacting cofactors in subnuclear structures, Biol. Chem., 2004, vol. 385, p. 231.

    Article  CAS  Google Scholar 

  38. Dery, M.A.C., Michaud, M.D., and Richard, D.E., Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators, Int. J. Biochem. Cell Biol., 2005, vol. 37, p. 535.

    Article  CAS  Google Scholar 

  39. Siso, G. and Cerdán, M.E., Kluyveromyces lactis: a suitable yeast model to study cellular defense mechanisms against hypoxia-induced oxidative stress, Oxid. Med. Cell Longev., 2012, p. 634. https://doi.org/10.1155/2012/634674

  40. Garbarino, V.R., Orr, M.E., Rodriguez, K.A., and Buffenstein, R., Mechanisms of oxidative stress resistance in the brain: lessons learned from hypoxia tolerant extremophilic vertebrates, Arch. Biochem. Biophys., 2015, vol. 576, p. 8. https://doi.org/10.1016/j.abb.2015.01.029

    Article  CAS  Google Scholar 

  41. Steller, J.G., Alberts, J.R., and Ronca, A.E., Oxidative stress as cause, consequence, or biomarker of altered female reproduction and development in the space environment, Int. J. Mol. Sci., 2018, vol. 19, no. 12, p. E3729. https://doi.org/10.3390/ijms19123729

    Article  CAS  Google Scholar 

  42. Kim, E.K., Jang, M., Song, M.J., et al., Redox-mediated mechanism of chemoresistance in cancer cells, Antioxidants (Basel). 2019, vol. 8, no. 10.

  43. Ray, P.D., Huang, B.W., and Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell Signal., 2012, vol. 24, no. 5, p. 981.

    Article  CAS  Google Scholar 

  44. Muller, F.L., Song, W., Liu, Y., et al., Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy, Free Radic. Biol. Med., 2006, vol. 40, p. 1993. https://doi.org/10.1016/j.freeradbiomed.2006.01.036

    Article  CAS  Google Scholar 

  45. Sharpe, M.A., Robb, S.J., and Clark, J.B., Nitric oxide and Fenton/Haber—Weiss chemistry: nitric oxide is a potent antioxidant at physiological concentrations, J. Neurochem., 2003, vol. 87, p. 386. https://doi.org/10.1046/j.1471-4159.2003.02001.x

    Article  CAS  Google Scholar 

  46. Balasubramanian, B., Pogozelski, W.K., and Tullius, T.D., DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, p. 9738. https://doi.org/10.1073/pnas.95.17.9738

    Article  CAS  Google Scholar 

  47. McElroy, G. and Chandel, N., Mitochondria control acute and chronic responses to hypoxia, Exp. Cell Res., 2017, vol. 356, p. 217. https://doi.org/10.1016/j.yexcr.2017.03.034

    Article  CAS  Google Scholar 

  48. Bell, E. and Chandel, N., Genetics of mitochondrial electron transport chain in regulating oxygen sensing, Methods Enzymol., 2007, vol. 435, p. 447. https://doi.org/10.1016/S00766879(07)350234

    Article  CAS  Google Scholar 

  49. Orr, A., Vargas, L., Turk, C., et al., Suppressors of super-oxide production from mitochondrial complex III, Nat. Chem. Biol., 2015, vol. 11, p. 834. https://doi.org/10.1038/nchembio.1910

    Article  CAS  Google Scholar 

  50. Vjotosh, A.N., Intracellular mechanisms of oxygen sensing, Biochemistry (Moscow), 2020, vol. 85, no. 1, p. 40. https://doi.org/10.1134/S0006297920010046

    Article  CAS  Google Scholar 

  51. Hamanaka, R. and Chandel, N., Mitochondrial reactive oxygen species regulate hypoxic signaling, Curr. Opin. Cell Biol., 2009, vol. 21, p. 894. https://doi.org/10.1016/j.ceb.2009.08.005

    Article  CAS  Google Scholar 

  52. Sabharwal, S., Waypa, G., Marks, J., and Schumacker, P., Peroxiredoxin5 targeted to the mitochondrial intermembrane space attenuates hypoxiainduced reactive oxygen species signaling, Biochem. J., 2013, vol. 456, p. 337. https://doi.org/10.1042/BJ20130740

    Article  CAS  Google Scholar 

  53. Murphy, M. How mitochondria produce reactive oxygen species, Biochem. J., 2009, vol. 417, p. 1. https://doi.org/10.1042/BJ20081386

    Article  CAS  Google Scholar 

  54. Murphy, M., Holmgren, A., Larsson, N., et al., Unraveling the biological roles of reactive oxygen species, Cell Metab., 2011, vol. 13, p. 361. https://doi.org/10.1016/j.cmet.2011.03.010

    Article  CAS  Google Scholar 

  55. Bell, E. and Chandel, N., Mitochondrial oxygen sensing: regulation of hypoxiainducible factor by mitochondrial generated reactive oxygen species, Essays Biochem., 2007, vol. 43, p. 17. https://doi.org/10.1042/BSE0430017

    Article  CAS  Google Scholar 

  56. Baranov, V.M., Physiological analysis of the possible causes of hypoxemia under conditions of weightlessness, Hum Physiol., 2011, vol. 37, no. 4, p. 455. https://doi.org/10.1134/S0362119711040050

    Article  Google Scholar 

  57. Baranov, V.M., Gazoenergoobmen cheloveka v kosmicheskom polete i model’nykh issledovaniyakh (Human Gas and Energy Exchange in Space Flight and Simulation Research), Moscow, 1993.

    Google Scholar 

  58. Grigor’ev, A.I. and Baranov, V.M., Human cardiovascular system during a space flight, Vestn. Ross. Akad. Med. Nauk, 2003, vol. 12, p. 41.

    Google Scholar 

  59. Ivanova, S.M., Yarlykova, Yu.V., and Labetskaya, O.I., Influence of space flight factors on human peripheral red blood, Aviakosm. Ekol. Med., 1998, vol. 32, no. 1, p. 35.

  60. Ivanova, S.M., Morukov, B.V., Labetskaya, O.I., et al., Red blood of cosmonauts during missions aboard the International Space Station (ISS), Hum. Physiol., 2010, vol. 36, p. 877. https://doi.org/10.1134/S0362119710070236

    Article  Google Scholar 

  61. Rizzo, A.M., Corsetto, P.A., Montorfano, G., et al., Effects of long-term space flight on erythrocytes and oxidative stress of rodents, PLoS One, 2012, vol. 7. e32361. https://doi.org/10.1371/journal.pone.0032361

    Article  CAS  Google Scholar 

  62. Voulgaridou, G.P., Anestopoulos, I., Franco, R., et al., DNA damage induced by endogenous aldehydes: current state of knowledge, Mutat Res., 2011, vol. 711, nos. 1–2, p. 13.

    Article  CAS  Google Scholar 

  63. Kimsey, S.J., Burns, L.S., and Fisher, C.L., Exp. no. 1115—special hematology: effects dynamic changes in red cell shape in response to the space flights, Proc. Skylab Life Sci. Symp., 1974, vol. 11, p. 93.

  64. Ivanova, S.M., The blood system during and after space flights, Orbital’naya stantsiya “Mir” (Orbital Station Mir), Grigoriev, A.I., Ed., Moscow, 2002, vol. 2, p. 159.

    Google Scholar 

  65. Samoilov, V.O., Meditsinskaya biofizika (Medical Biophysics), St. Petersburg, 2004.

    Google Scholar 

  66. Udden, M.M., Driscoll, T.B., Pickett, M., et al., Decreased production of red blood cells in human subjects exposed to microgravity, J. Lab. Clin. Med., 1995, vol. 125, p. 442.

    CAS  Google Scholar 

  67. Lane, H.W., Alfrey, C.P., Driscoll, T.B., et al., Control of red blood cell mass during spaceflight, J. Gravit. Physiol., 1996, vol. 3, p. 87.

    CAS  Google Scholar 

  68. Xu, K., Holubec, K.V., Love, J.E., et al., Abnormal erythropoiesis in microgravity, Blood, 2004, vol. 104, p. 3701.

    Article  Google Scholar 

  69. De Santo, N.G., Cirillo, M., Kirsch, K.A., et al., Anemia and erythropoietin in space flights, Semin. Nephrol., 2005, vol. 25, p. 379. https://doi.org/10.1016/j.semnephrol.2005.05.006

    Article  CAS  Google Scholar 

  70. Smith, S.M., Red blood cell and iron metabolism during space flight, Nutrition, 2002, vol. 18, p. 864. https://doi.org/10.1016/S0899-9007(02)00912-7

    Article  CAS  Google Scholar 

  71. Leach, C.S. and Johnson, P.C., Influence of spaceflight on erythrokinetics in man, Science, 1984, vol. 225, p. 216. https://doi.org/10.1126/science.6729477

    Article  CAS  Google Scholar 

  72. Alfrey, C.P., Rice, L., Udden, M.M., and Driscoll, T.B., Neocytolysis: physiological down-regulator of red-cell mass, Lancet, 1997, vol. 349, p. 1389. https://doi.org/10.1016/S0140-6736(96)09208-2

    Article  CAS  Google Scholar 

  73. Davis, T.A., Wiesmann, W., Kidwell, W., et al., Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis, J. Leukoc. Biol., 1996, vol. 60, p. 69. https://doi.org/10.1002/jlb.60.1.69

    Article  CAS  Google Scholar 

  74. Dunn, C.D.R., Lange, R.D., Kimzey, S.L., et al., Serum erythropoietin titers during prolonged bedrest; relevance to the “anaemia” of space flight, Eur. J. Appl. Physiol. Occup. Physiol., 1984, vol. 52, p. 178. https://doi.org/10.1007/BF00433389

    Article  CAS  Google Scholar 

  75. Trudel, G., Uhthoff, H.K., and Laneuville, O., Hemolysis during and after 21 days of head-down-tilt bed rest, Physiol. Rep., 2017, vol. 5. e13469. https://doi.org/10.14814/phy2.13469

    Article  CAS  Google Scholar 

  76. Ivanova, S.M., Hematological studies, Godichnaya antiortostaticheskaya gipokineziya (ANOG)—fiziologicheskaya model’ mezhplanetnogo kosmicheskogo poleta (Annual Antiorthostatic Hypokinesia (ANOG)—a Physiological Model of Interplanetary Space Flight), Grigoriev, A.I. and Kozlovskaya, I.B., Eds., Moscow, 2018, p. 210.

    Google Scholar 

  77. Zwart, S.R., Mathews Oliver, S.A., Fesperman, J.V., et al., Nutritional status assessment before, during, and after long-duration head-down bed rest, Aviat. Space Environ. Med., 2009, vol. 80, p. 15. https://doi.org/10.3357/ASEM.BR07.2009

    Article  CAS  Google Scholar 

  78. Ryan, B.J., Goodrich, J.A., Schmidt, W.F., et al., Haemoglobin mass alterations in healthy humans following four-day head-down tilt bed rest, Exp. Physiol., 2016, vol. 101, p. 628. https://doi.org/10.1113/EP085665

    Article  CAS  Google Scholar 

  79. Gunga, H.C., Kirsch, K., Baartz, F., et al., Erythropoietin under real and simulated microgravity conditions in humans, J. Appl. Physiol., 1996, vol. 81, p. 761. https://doi.org/10.1152/jappl.1996.81.2.761

    Article  CAS  Google Scholar 

  80. Morgan, J.L., Zwart, S.R., Heer, M., et al., Bone metabolism and nutritional status during 30-day head-down-tilt bed rest, J. Appl. Physiol., 2012, vol. 113, p. 1519. https://doi.org/10.1152/japplphysiol.01064.2012

    Article  CAS  Google Scholar 

  81. Oganov, V.S. and Bakulin, A.V., Mineral exchange: bone tissue condition, Orbital’naya stantsiya “Mir” (Orbital Station Mir), Grigoriev, A.I., Ed., Moscow, 2002, vol. 2, p. 137.

    Google Scholar 

  82. Yang, J., Zhang, G., Dong, D., and Shang, P., Effects of iron overload and oxidative damage on the musculoskeletal system in the space environment: data from spaceflights and ground-based simulation models, Int. J. Mol. Sci., 2018, vol. 19, no. 9, p. E2608. https://doi.org/10.3390/ijms19092608

    Article  CAS  Google Scholar 

  83. Crielaard, B.J., Lammers, T., and Rivella, S., Targeting iron metabolism in drug discovery and delivery, Nat. Rev. Drug Discov., 2017, vol. 16, p. 400. https://doi.org/10.1038/nrd.2016.248

    Article  CAS  Google Scholar 

  84. Dixon, S.J. and Stockwell, B.R., The role of iron and reactive oxygen species in cell death, Nat. Chem. Biol., 2014, vol. 10, p. 9. https://doi.org/10.1038/nchembio.1416

    Article  CAS  Google Scholar 

  85. Tsay, J., Yang, Z., Ross, F.P., et al., Bone loss caused by iron overload in a murine model: importance of oxidative stress, Blood, 2010, vol. 116, p. 2582. https://doi.org/10.1182/blood-2009-12-260083

    Article  CAS  Google Scholar 

  86. Tian, Q., Wu, S., Dai, Z., et al., Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway, Peer J., 2016, vol. 4. e2611. https://doi.org/10.7717/peerj.2611

    Article  CAS  Google Scholar 

  87. Balogh, E., Tolnai, E., Nagy, B., et al., Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin, Biochim. Biophys. Acta, 2016, vol. 1862, p. 1640. https://doi.org/10.1016/j.bbadis.2016.06.003

    Article  CAS  Google Scholar 

  88. Zwart, S.R., Morgan, J.L., and Smith, S.M., Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the international space station, Am. J. Clin. Nutr., 2013, vol. 98, p. 217. https://doi.org/10.3945/ajcn.112.056465

    Article  CAS  Google Scholar 

  89. Dalla Libera, L., Ravara, B., Gobbo, V., et al., A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle, J. Appl. Physiol., 2009, vol. 107, p. 549. https://doi.org/10.1152/japplphysiol.00280.2009

    Article  CAS  Google Scholar 

  90. Yang, J., Meng, X., Dong, D., et al., Iron overload involved in the enhancement of unloading-induced bone loss by hypomagnetic field, Bone, 2018, vol. 114, p. 235. https://doi.org/10.1016/j.bone.2018.06.012

    Article  CAS  Google Scholar 

  91. Morikawa, D., Nojiri, H., Saita, Y., et al., Cytoplasmic reactive oxygen species and sod1 regulate bone mass during mechanical unloading, J. Bone Miner. Res., 2013, vol. 28, p. 2368. https://doi.org/10.1002/jbmr.1981

    Article  CAS  Google Scholar 

  92. Arosio, P., Elia, L., and Poli, M., Ferritin, cellular iron storage and regulation, IUBMB Life, 2017, vol. 69, p. 414. https://doi.org/10.1002/iub.1621

    Article  CAS  Google Scholar 

  93. Smith, S.M., Zwart, S.R., Block, G., et al., The nutritional status of astronauts is altered after long-term space flight aboard the International space station, J. Nutr., 2005, vol. 135, p. 437. https://doi.org/10.1093/jn/135.3.437

    Article  CAS  Google Scholar 

  94. Reardon, T.F. and Allen, D.G., Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance, Exp. Physiol., 2009, vol. 94, p. 720. https://doi.org/10.1113/expphysiol.2008.046045

    Article  CAS  Google Scholar 

  95. Muckenthaler, M.U., Rivella, S., Hentze, M.W., and Galy, B., A red carpet for iron metabolism, Cell, 2017, vol. 168, p. 344. https://doi.org/10.1016/j.cell.2016.12.034

    Article  CAS  Google Scholar 

  96. Morey-Holton, E.R. and Globus, R.K., Hindlimb unloading rodent model: technical aspects, J. Appl. Physiol., 2002, vol. 92, p. 1367. https://doi.org/10.1152/japplphysiol.00969.2001

    Article  Google Scholar 

  97. Andrews, N.C., Disorders of iron metabolism, N. Engl. J. Med., 1999, vol. 341, p. 1986. https://doi.org/10.1056/NEJM199912233412607

    Article  CAS  Google Scholar 

  98. Tahimic, C.G.T. and Globus, R.K., Redox signaling and its impact on skeletal and vascular responses to spaceflight, Int. J. Mol. Sci., 2017, vol. 18, no. 10, p. 2153. https://doi.org/10.3390/ijms18102153

    Article  CAS  Google Scholar 

  99. Stein, T. and Leskiw, M., Oxidant damage during and after spaceflight, Am. J. Physiol.: Endocrinol. Metab., 2000, vol. 278, p. E37. https://doi.org/10.1152/ajpendo.2000.278.3.E375

    Article  Google Scholar 

  100. Indo, H.P., Majima, H.J., Terada, M., et al., Changes in mitochondrial homeostasis and redox status in astronauts following long stays in space, Sci. Rep., 2016, vol. 6, p. 39015. https://doi.org/10.1038/srep39015

    Article  CAS  Google Scholar 

  101. De Luca, C., Deeva, I., Mariani, S., et al., Monitoring antioxidant defenses and free radical production in space-flight, aviation and railway engine operators, for the prevention and treatment of oxidative stress, immunological impairment, and pre-mature cell aging, Toxicol. Ind. Health, 2009, vol. 25, p. 259. https://doi.org/10.1177/0748233709103032

    Article  CAS  Google Scholar 

  102. Mao, X., Pecaut, M., Stodieck, L., et al., Biological and metabolic response in STS-135 space-flown mouse skin, Free Radic. Res., 2014, vol. 48, p. 890. https://doi.org/10.3109/10715762.2014.920086

    Article  CAS  Google Scholar 

  103. Michalopoulos, G.K., Advances in liver regeneration, Expert. Rev. Gastroenterol. Hepatol., 2014, vol. 8, p. 897. https://doi.org/10.1586/17474124.2014.934358

    Article  CAS  Google Scholar 

  104. Toshima, T., Shirabe, K., Fukuhara, T., et al., Suppression of autophagy during liver regeneration impairs energy charge and hepatocyte senescence in mice, Hepatology, 2014, vol. 60, p. 290. https://doi.org/10.1002/hep.27140

    Article  CAS  Google Scholar 

  105. Diehl, A.M. and Chute, J., Underlying potential: cellular and molecular determinants of adult liver repair, J. Clin. Invest., 2013, vol. 123, p. 1858. https://doi.org/10.1172/JCI69966

    Article  CAS  Google Scholar 

  106. Ogrodnik, M., Miwa, S., Tchkonia, T., et al., Cellular senescence drives age-dependent hepatic steatosis, Nat. Commun., 2017, vol. 8, p. 15691. https://doi.org/10.1038/ncomms15691

    Article  CAS  Google Scholar 

  107. Terada, M., Seki, M., Takahashi, R., et al., Effects of a closed space environment on gene expression in hair follicles of astronauts in the International space station, PLoS One, 2016, vol. 11, no. 3. e0150801.https://doi.org/10.1371/journal.pone.0150801

  108. Stein, T.P., Space flight and oxidative stress, Nutrition, 2002, vol. 18, p. 867. https://doi.org/10.1016/S0899-9007(02)00938-3

    Article  CAS  Google Scholar 

  109. Markin, A.A., Popova, I.A., Vetrova, E.G., et al., Lipid peroxidation and activity of diagnostically significant enzymes in cosmonauts after flights of various durations, Aviakosm. Ekol. Med., 1997, vol. 31, p. 14.

    CAS  Google Scholar 

  110. Pellegrino, M.A., Desaphy, J.F., Brocca, L., et al., Redox homeostasis, oxidative stress and disuse muscle atrophy, J. Physiol., 2011, vol. 589, p. 2147. https://doi.org/10.1113/jphysiol.2010.203232

    Article  CAS  Google Scholar 

  111. Brocca, L., Pellegrino, M.A., Desaphy, J.F., et al., Is oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimb-unloaded mice, Exp. Physiol., 2010, vol. 95, p. 331. https://doi.org/10.1113/expphysiol.2009.050245

    Article  CAS  Google Scholar 

  112. Desaphy, J.F., Pierno, S., Liantonio, A., et al., Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles, Pharmacol. Res., 2010, vol. 61, p. 553. https://doi.org/10.1016/j.phrs.2010.01.012

  113. Ikemoto, M., Okamura, Y., Kano, M., et al., A relative high dose of vitamin E does not attenuate unweighting-induced oxidative stress and ubiquitination in rat skeletal muscle, J. Physiol. Anthropol. Appl. Hum. Sci., 2002, vol. 21, p. 257. https://doi.org/10.2114/jpa.21.257

    Article  Google Scholar 

  114. Koesterer, T.J., Dodd, S.L., and Powers, S., Increased antioxidant capacity does not attenuate muscle atrophy caused by unweighting, J. Appl. Physiol., 2002, vol. 93, p. 1959. https://doi.org/10.1152/japplphysiol.00511.2002

    Article  CAS  Google Scholar 

  115. Larina, I.M., Brzhzovsky, A.G., Nosovsky, A.M., et al., Post-translational oxidation modifications of blood plasma proteins of cosmonauts after a long-term flight: part I, Hum. Physiol., 2020, vol. 46, no. 5, p. 531. https://doi.org/10.1134/S0362119720050072

    Article  CAS  Google Scholar 

  116. Liang, Y., Xie, S.B., Wu, C.H., et al., Coagulation cascade and complement system in systemic lupus erythematosus, Oncotarget, 2017, vol. 9, no. 19, p. 14862.

    Article  Google Scholar 

  117. Velez, D.R., Fortunato, S.J., Thorsen, P., et al., Preterm birth in Caucasians is associated with coagulation and inflammation pathway gene variants, PLoS One, 2008, vol. 3, no. 9. e3283

    Article  Google Scholar 

  118. Okamoto, T. and Suzuki, K., The role of gap junction-mediated endothelial cell—cell interaction in the crosstalk between inflammation and blood coagulation, Int. J. Mol. Sci., 2017, vol. 18, no. 11, p. 2254.

    Article  Google Scholar 

  119. Manook, M., Kwun, J., Sacks, S., et al., Innate networking: thrombotic microangiopathy, the activation of coagulation and complement in the sensitized kidney transplant recipient, Transplant. Rev. (Orlando), 2018, vol. 32, no. 3, p. 119.

    Article  Google Scholar 

  120. O’Dwyer, D.N., Gurczynski, S.J., and Moore, B.B., Pulmonary immunity and extracellular matrix interactions, Matrix Biol., 2018, vol. 73, p. 122.

    Article  Google Scholar 

  121. Murphy-Ullrich, J.E. and Sage, E.H., Revisiting the matricellular concept, Matrix Biol., 2014, vol. 37, p. 1.

    Article  CAS  Google Scholar 

  122. Miraldi, E.R., Sharfi, H., Friedline, R.H., et al., Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice, Integr. B-iol. (Cambridge), 2013, vol. 5, no. 7, p. 940.

    Article  CAS  Google Scholar 

  123. Posma, J.J., Grover, S.P., Hisada, Y., et al., Roles of coagulation proteases and PARs (Protease-Activated Receptors) in mouse models of inflammatory diseases, Arterioscler. Thromb. Vasc. Biol., 2019, vol. 39, no. 1, p. 13.

    Article  CAS  Google Scholar 

  124. Ravandi, A., Leibundgut, G., Hung, M.Y., et al., Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans, J. Am. Coll. Cardiol., 2014, vol. 63, no. 19, p. 1961.

    Article  CAS  Google Scholar 

  125. Burns, J. and Manda, G., Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance, Int. J. Mol. Sci., 2017, vol. 18, p. 2755.

    Article  Google Scholar 

  126. Biolo, G., Heer, M., Narici, M., and Strollo, F., Microgravity as a model of ageing, Curr. Opin. Clin. Nutrit. Metab. Care, 2003, vol. 6, no. 1, p. 31.

    Article  Google Scholar 

  127. Meikle, P.J. and Summers, S.A., Sphingolipids and phospholipids in insulin resistance and related metabolic disorders, Nat. Rev. Endocrinol., 2017, vol. 13, p. 79. https://doi.org/10.1038/nrendo.2016.169

    Article  CAS  Google Scholar 

  128. Haigis, M.C., Deng, C.X., Finley, L.W., et al., SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis, Cancer Res., 2012, vol. 72, p. 2468. https://doi.org/10.1158/0008-5472.CAN-11-3633

    Article  CAS  Google Scholar 

  129. Jonscher, K.R., Alfonso-Garcia, A., Suhalim, J.L., et al., Spaceflight activates lipotoxic pathways in mouse liver, PLoS One, 2016, vol. 11. e0152877

    Article  Google Scholar 

  130. Lu, H., Samanta, D., Xiang, L., et al., Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, p. 4600.

    Article  Google Scholar 

  131. Samanta, D. and Semenza, G.L., Maintenance of redox homeostasis by hypoxia-inducible factors, Redox Biol., 2017, vol. 13, p. 331. https://doi.org/10.1016/j.redox.2017.05.022

    Article  CAS  Google Scholar 

  132. Berra, E., Roux, D., Richard, D.E., and Pouysségur, J., Hypoxia-inducible factor-1α (HIF-1α) escapes O2-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm, Eur. Mol. Biol. Organ. Rep., 2001, vol. 2, p. 615.

    CAS  Google Scholar 

  133. Kaelin, W.G., Jr. and Ratcliffe, P.J., Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Mol. Cell, 2008, vol. 30, p. 393.

    Article  CAS  Google Scholar 

  134. Lando, D., Peet, D.J., Gorman, J.J., et al., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor, Genes Dev., 2002, vol. 16, p. 1466.

    Article  CAS  Google Scholar 

  135. Dayan, F., Roux, D., Brahimi-Horn, M.C., et al., The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1α, Cancer Res., 2006, vol. 66, p. 3688.

    Article  CAS  Google Scholar 

  136. Semenza, G.L. and Wang, G.L., A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation, Mol. Cell. Biol., 1992, vol. 12, p. 5447.

    CAS  Google Scholar 

  137. Zhang, H., Bosch-Marce, M., Shimoda, L.A., et al., Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia, J. Biol. Chem., 2008, vol. 283, p. 10892.

    Article  CAS  Google Scholar 

  138. Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V., HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metab., 2006, vol. 3, p. 177.

    Article  Google Scholar 

  139. Lamb, L.E., Hypoxia—an anti-deconditioning factor for manned space flight, Aerospace Med., 1965, vol. 36, no. 2, p. 97.

    Google Scholar 

  140. Prisk, G.K., Elliott, A.R., and West, J.B., Sustained micro-gravity reduces the human ventilatory response to hypoxia but not to hypercapnia, J. Appl. Physiol., 1985, 2000, vol. 88, no. 4, p. 1421. https://doi.org/10.1152/jappl.2000.88.4.1421

  141. Smith, S.M., Wastney, M.E., O’Brien, K.O., et al., Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the “Mir” space station, J. Bone Miner. Res., 2005, vol. 20, no. 2, p. 208.

    Article  CAS  Google Scholar 

  142. Vorob’ev, D.V. and Larina, I.M., Glucocorticoid receptors in physiological states and in extreme conditions: review, Kosm. Biol. Aviakosm. Med., 1990, vol. 24, no. 6, p. 4.

    Google Scholar 

Download references

Funding

This study was supported by the Program for Fundamental Research of the State Scientific Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, topic 65.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Larina.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, I.M., Buravkova, L.B. & Grigoriev, A.I. Oxygen-Dependent Adaptation Processes in a Human Organism in Normal Living Conditions and during Space Flight. Hum Physiol 48, 838–850 (2022). https://doi.org/10.1134/S0362119722070118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722070118

Keywords:

Navigation