Skip to main content
Log in

Influence of Running on Some Physiological and Molecular Biological Markers of Human Aging

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Runners are known to have a lower risk of death from cardiovascular disease and overall mortality compared to their non-training peers. This review analyzes the literature data on the effect of running on some indicators of a person’s biological age. The influence of running on markers of aging, such as the telomere length and the redox and inflammatory statuses of the body, is considered. The positive effects of running on mental health and cognitive performance are discussed. The problem of determining the optimal intensity of physical activity for a unique beneficial effect on health and longevity is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kyu, H.H., Bachman, V.F., Alexander, L.T., et al., Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013, Br. Med. J., 2016, vol. 354, p. i3857.

    Article  Google Scholar 

  2. Wang, Y., Lee, D.C., Brellenthin, A.G., et al., Leisure-time running reduces the risk of incident type 2 diabetes, Am. J. Med., 2019, vol. 132, no. 10, p. 1225.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, D.C., Pate, R.R., Lavie, C.J., et al., Leisure-time running reduces all-cause and cardiovascular mortality risk, J. Am. Coll. Cardiol., 2014, vol. 64, no. 5, p. 472.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pollock, M.L., Dawson, G.A., Miller, H.S., Jr., et al., Physiologic responses of men 49 to 65 years of age to endurance training, J. Am. Geriatr. Soc., 1976, vol. 24, no. 3, p. 97.

    Article  CAS  PubMed  Google Scholar 

  5. Miyamura, M., Ishida, K., Hashimoto, I., and Yuza, N., Ventilatory response at the onset of voluntary exercise and passive movement in endurance runners, Eur. J. Appl. Physiol. Occup. Physiol., 1997, vol. 76, no. 3, p. 221.

    Article  CAS  PubMed  Google Scholar 

  6. Dubrovskii, V.I., Sportivnaya fiziologiya (Sports Physiology), Moscow: Vlados, 2005.

  7. Degens, H., Stasiulis, A., Skurvydas, A., et al., Physiological comparison between non-athletes, endurance, power and team athletes, Eur. J. Appl. Physiol., 2019, vol. 119, no. 6, p. 1377.

    Article  PubMed  Google Scholar 

  8. Shapiro, L.M. and Smith, R.G., Effect of training on left ventricular structure and function. An echocardiographic study, Br. Heart. J., 1983, vol. 50, no. 6, p. 534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deus, L.A., Sousa, C.V., Rosa, T.S., et al., Heart rate variability in middle-aged sprint and endurance athletes, Physiol. Behav., 2019, vol. 205, no. 1, p. 39.

    Article  CAS  PubMed  Google Scholar 

  10. Blackburn, E., The telomere and telomerase: How do they interact? Mt. Sinai J. Med., 1999, vol. 66, nos. 5–6, p. 292.

    CAS  PubMed  Google Scholar 

  11. Blackburn, E.H., Epel, E.S., and Lin, J., Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection, Science, 2015, vol. 350, no. 6265, p. 1193.

    Article  CAS  PubMed  Google Scholar 

  12. Srinivas, N., Rachakonda, S., and Kumar, R., Telomeres and telomere length: a general overview, Cancers (Basel), 2020, vol. 12, no. 3, p. 558.

    Article  CAS  PubMed Central  Google Scholar 

  13. Wilson, W.R., Herbert, K.E., Mistry, Y., et al., Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease, Eur. Heart J., 2008, vol. 29, no. 21, p. 2689.

    Article  CAS  PubMed  Google Scholar 

  14. Epel, E.S., Merkin, S.S., Cawthon, R., et al., The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men, Aging (Albany NY), 2008, vol. 1, no. 1, p. 81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sousa, C.V., Aguiar, S.S., Santos, P.A., et al., Telomere length and redox balance in master endurance runners: the role of nitric oxide, Exp. Gerontol., 2019, vol. 117, p. 113.

    Article  CAS  PubMed  Google Scholar 

  16. Simoes, H.G., Sousa, C.V., Dos Santos Rosa, T., et al., Longer telomere length in elite master sprinters: relationship to performance and body composition, Int. J. Sports Med., 2017, vol. 38, no. 14, p. 1111.

    Article  CAS  PubMed  Google Scholar 

  17. Denham, J., Nelson, C.P., O’Brien, B.J., et al., Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors, PLoS One, 2013, vol. 8, no. 7, p. e69377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loprinzi, P.D. and Sng, E., Mode-specific physical activity and leukocyte telomere length among U.S. adults: Implications of running on cellular aging, Prev. Med., 2016, vol. 85, p. 17.

    Article  PubMed  Google Scholar 

  19. Werner, C.M., Hecksteden, A., Morsch, A., et al., Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study, Eur. Heart J., 2019, vol. 40, no. 1, p. 34.

    Article  CAS  PubMed  Google Scholar 

  20. Chilton, W.L., Marques, F.Z., West, J., et al., Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells, PLoS One, 2014, vol. 9, no. 4, p. e92088.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Denham, J., O’Brien, B.J., Prestes, P.R., et al., Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres, J. Appl. Physiol., 2016, vol. 120, no. 2, p. 148.

    Article  CAS  PubMed  Google Scholar 

  22. Mathur, S., Ardestani, A., Parker, B., et al., Telomere length and cardiorespiratory fitness in marathon runners, J. Invest. Med., 2013, vol. 61, no. 3, p. 613.

    Article  Google Scholar 

  23. Laye, M.J., Solomon, T.P., Karstoft, K., et al., Increased shelter in mRNA expression in peripheral blood mononuclear cells and skeletal muscle following an ultra-long-distance running event, J. Appl. Physiol., 2012, vol. 112, no. 5, p. 773.

    Article  CAS  PubMed  Google Scholar 

  24. Østhus, I.B., Sgura, A., Berardinelli, F., et al., Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study, PLoS One, 2012, vol. 7, no. 12, p. e52769.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simpson, R.J., Cosgrove, C., Chee, M.M., et al., Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans, Exercise Immunol. Rev., 2010, vol. 16, p. 40.

    Google Scholar 

  26. Vaiserman, A. and Krasnienkov, D., Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives, Front Genet., 2021, vol. 11, p. 630186.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosa, T.S., Neves, R.V.P., Deus, L.A., et al., Sprint and endurance training in relation to redox balance, inflammatory status and biomarkers of aging in master athletes, Nitric Oxide, 2020, vol. 102, p. 42.

    Article  CAS  PubMed  Google Scholar 

  28. Markotić, V., Pokrajčić, V., Babić, M., et al., The positive effects of running on mental health, Psychiatr. Danubina, 2020, vol. 32, suppl. 2, p. 233.

    Google Scholar 

  29. Da Silva Santos, R. and Galdino, G., Endogenous systems involved in exercise-induced analgesia, J. Physiol. Pharmacol., 2018, vol. 69, no. 1, p. 3.

    CAS  PubMed  Google Scholar 

  30. Yarushkina, N.I. and Filaretova, L.P., Pre- and post-conditioning effects of voluntary and forced running on pain sensitivity, Usp. Fiziol. Nauk, 2020, vol. 51, no. 4, p. 3.

    Google Scholar 

  31. Yarushkina, N.I., Komkova, O.P., and Filaretova, L.P., Influence of forced treadmill and voluntary wheel running on the sensitivity of gastric mucosa to ulcerogenic stimuli in male rats, J. Physiol. Pharmacol., 2020, vol. 71, no. 6. https://doi.org/10.14198/jhse.2020.15.Proc4.04

  32. Micheli, L., Ceccarelli, M., D’Andrea, G., and Tirone, F., Depression and adult neurogenesis: positive effects of the antidepressant fluoxetine and of physical exercise, Brain Res. Bull., 2018, vol. 143, p. 181.

    Article  CAS  PubMed  Google Scholar 

  33. Oswald, F., Campbell, J., Williamson, C., et al., A scoping review of the relationship between running and mental health, Int. J. Environ. Res. Publ. Health, 2020, vol. 17, no. 21, p. 8059.

    Article  Google Scholar 

  34. Herring, M.P., Monroe, D.C., Gordon, B.R., et al., Acute exercise effects among young adults with analogue generalized anxiety disorder, Med. Sci. Sports Exercise, 2019, vol. 51, no. 5, p. 962.

    Article  Google Scholar 

  35. Bernstein, E.E. and McNally, R.J., Acute aerobic exercise helps overcome emotion regulation deficits, Cognit. Emotion 2017, vol. 31, no. 4, p. 834.

    Article  Google Scholar 

  36. Yen, K.T. and Cherng, S., Secondary prevention of depressive prodrome in adolescents: Before and after attending a jogging program on campus, Int. J. Environ. Res. Publ. Health, 2020, vol. 17, no. 21, p. 7705.

    Article  Google Scholar 

  37. Keating, L.E., Becker, S., McCabe, K., et al., Effects of a 12-week running programme in youth and adults with complex mood disorders, BMJ Open Sport Exercise Med., 2018, vol. 4, no. 1, p. e000314.

    Article  Google Scholar 

  38. Kruisdijk, F., Hopman-Rock, M., Beekman, A.T.F., and Hendriksen, I., EFFORT-D: results of a randomized controlled trial testing the effect of running therapy on depression, BMC Psychiatry, 2019, vol. 19, no. 1, p. 170.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Onate, J., Depression in ultra-endurance athletes: a review and recommendations, Sports Med. Arthrosc. Rev., 2019, vol. 27, no. 1, p. 31.

    Article  PubMed  Google Scholar 

  40. Buck, K., Spittler, J., Reed, A., and Khodaee, M., Psychological attributes of ultramarathoners, Wilderness Environ. Med., 2018, vol. 29, no. 1, p. 66.

    Article  PubMed  Google Scholar 

  41. Krokosz, D., Bidzan-Bluma, I., Ratkowski, W., et al., Changes of mood and cognitive performance before and after a 100 km nighttime ultramarathon run, Int. J. Environ. Res. Publ. Health, 2020, vol. 17, no. 22, p. 8400.

    Article  Google Scholar 

  42. Kapilevich, L.V., Yezhova, G.S., Zakharova, A.N., et al., Brain bioelectrical activity and cerebral hemodynamics in athletes under combined cognitive and physical loading, Hum. Physiol., 2019, vol. 45, no. 2, p. 164.

    Article  Google Scholar 

  43. Brown, B.M., Peiffer, J., and Rainey-Smith, S.R., Exploring the relationship between physical activity, beta-amyloid and tau: a narrative review, Ageing Res. Rev., 2019, vol. 50, p. 9.

    Article  CAS  PubMed  Google Scholar 

  44. Fan, B., Jabeen, R., Bo, B., et al., What and how can physical activity prevention function on Parkinson’s disease? Oxid. Med. Cell. Longevity, 2020, vol., 2020, p. 4293071.

    Article  Google Scholar 

  45. Dudek, K.A., Dion-Albert, L., Kaufmann, F.N., et al., Neurobiology of resilience in depression: immune and vascular insights from human and animal studies, Eur. J. Neurosci., 2021, vol. 53, no. 1, p. 183.

    Article  PubMed  Google Scholar 

  46. Lindqvist, D., Epel, E.S., Mellon, S.H., et al., Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging, Neurosci. Biobehav. Rev., 2015, vol. 55, p. 333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Newcombe, E.A., Camats-Perna, J., Silva, M.L., et al., Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease, J. Neuroinflamm., 2018, vol. 15, no. 1, p. 276.

    Article  Google Scholar 

  48. Chen, C., Nakagawa, S., An, Y., et al., The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels, Front. Neuroendocrinol., 2017, vol. 44, p. 83.

    Article  CAS  PubMed  Google Scholar 

  49. Oztasyonar, Y., Interaction between different sports branches such as taekwondo, box, athletes and serum brain derived neurotrophic factor levels, J. Sports Med. Phys. Fitness, 2017, vol. 57, no. 4, p. 457.

    Article  PubMed  Google Scholar 

  50. da Silveira, F.P., Basso, C., Raupp, W., et al., BDNF levels are increased in peripheral blood of middle-aged amateur runners with no changes on histone H4 acetylation levels, J. Physiol. Sci., 2017, vol. 67, no. 6, p. 681.

    Article  PubMed  Google Scholar 

  51. Roh, H.T., Cho, S.Y., Yoon, H.G., and So, W.Y., Effect of exercise intensity on neurotrophic factors and blood-brain barrier permeability induced by oxidative-nitrosative stress in male college students, Int. J. Sport Nutr. Exercise Metab., 2017, vol. 27, no. 3, p. 239.

    Article  CAS  Google Scholar 

  52. Jetté, M., Sidney, K., and Blümchen, G., Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity, Clin. Cardiol., 1990, vol. 13, no. 8, p. 555.

    Article  PubMed  Google Scholar 

  53. Lee, D.C., Lavie, C.J., Sui, X., and Blair, S.N., Running and mortality: Is more actually worse? Mayo Clin. Proc., 2016, vol. 91, no. 4, p. 534.

    Article  PubMed  Google Scholar 

  54. Knechtle, B. and Nikolaidis, P.T., Physiology and pathophysiology in ultra-marathon running, Front. Physiol., 2018, vol. 9, p. 634.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Poussel, M., Touzé, C., Allado, E., et al., Ultramarathon and renal function: does exercise-induced acute kidney injury really exist in common conditions? Front. Sports Act. Living, 2020, vol. 21, no. 1, p. 71.

    Article  Google Scholar 

  56. Tiller, N.B., Pulmonary and respiratory muscle function in response to marathon and ultra-marathon running: a review, Sports Med., 2019, vol. 49, no. 7, p. 1031.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim, J.H., Malhotra, R., Chiampas, G., et al., Cardiac arrest during long-distance running races, N. Engl. J. Med., 2012, vol. 366, no. 2, p. 130.

    Article  CAS  PubMed  Google Scholar 

  58. Messier, S.P., Martin, D.F., Mihalko, S.L., et al., A 2-year prospective cohort study of overuse running injuries: the runners and injury longitudinal study (TRAILS), Am. J. Sports Med., 2018, vol. 46, no. 9, p. 2211.

    Article  PubMed  Google Scholar 

  59. Alentorn-Geli, E., Samuelsson, K., Musahl, V., et al., The association of recreational and competitive running with hip and knee osteoarthritis: a systematic review and meta-analysis, J. Orthop. Sports Phys. Ther., 2017, vol. 47, no. 6, p. 373.

    Article  PubMed  Google Scholar 

  60. Ross, R., Blair, S.N., Arena, R., et al., Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association, Circulation, 2016, vol. 134, no. 24, p. e653.

    Article  PubMed  Google Scholar 

  61. Nagovitsyn, R.S., Osipov, A.Y., Kudryavtsev, M.D., et al., Realization of step exercises using the independent calorimetry during the period of self-isolation, J. Hum. Sport Exercise, 2020, vol. 15, p. S1020.

    Google Scholar 

  62. Buhmann, J., Moens, B., van Dyck, E., et al., Optimizing beat synchronized running to music, PLoS One, 2018, vol. 13, no. 12, p. e0208702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagovitsyn, R.S., Zekrin, F.H., Fendel’, T.V., et al., Favorite music as an increasing factor of the result in the control running of athletes, J. Hum. Sport Exercise, 2019, vol. 14, p. S1829.

    Google Scholar 

  64. Bonnaerens, S., Fiers, P., Galle, S., et al., Grounded running reduces musculoskeletal loading, Med. Sci. Sports Exercise, 2019, vol. 51, no. 4, p. 708.

    Article  Google Scholar 

  65. Osipov, A., Ratmanskaya, T., Nagovitsyn, R., et al., Increasing the level of cardiorespiratory and strength endurance of female students by means of mixed training (Kangoo–jumps fitness and resistance training), Phys. Act. Rev., 2020, vol. 8, no. 2, p. 38.

    Google Scholar 

  66. Cerezuela-Espejo, V., Hernández-Belmonte, A., Courel-Ibáñez, J., et al., Are we ready to measure running power? Repeatability and concurrent validity of five commercial technologies, Eur. J. Sport Sci., 2020, vol. 21, no. 3, p. 341.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the critical remarks of Lyudmila Pavlovna Filaretova, Academician of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Zhuikova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors declare no obvious and potential conflicts of interest related to the publication of this article.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuikova, S.E., Nagovitsyn, R.S. Influence of Running on Some Physiological and Molecular Biological Markers of Human Aging. Hum Physiol 47, 587–594 (2021). https://doi.org/10.1134/S0362119721050133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721050133

Keywords:

Navigation