Skip to main content
Log in

Influence of Physical Activity on the Regulation of Iron Metabolism

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Intense physical activity has a significant effect on iron metabolism in the human organism. This paper is a review of world literature data focused on the mechanisms of iron metabolism regulation in the human organism, as well as the influence of intense exercise on these regulatory mechanisms. We have discussed the mechanisms of iron absorption and transport and the regulation of these processes under normal conditions. It has been found that intense exercise is accompanied by increased production of interleukin-6, a positive regulator of hepcidin production. Hepcidin, in turn, has an inhibitory effect on the expression of divalent metal transporter 1 and ferroportin, finally leading to both decreased iron absorption and iron sequestration in cells. All of the mentioned stages of iron deficiency development may be promising targets for correction of iron balance and working ability in patients exposed to intense physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Winter, W.E., Bazydlo, L.A., and Harris, N.S., The molecular biology of human iron metabolism, Lab. Med., 2014, vol. 45, no. 2, p. 92.

    Article  PubMed  Google Scholar 

  2. Beard, J.L., Iron biology in immune function, muscle metabolism and neuronal functioning, J. Nutr., 2001, vol. 131, no. 2, p. 568S.

    Article  PubMed  CAS  Google Scholar 

  3. Corna, G., Caserta, I., Monno, A., et al., The repair of skeletal muscle requires iron recycling through macrophage ferroportin, J. Immunol., 2016, vol. 197, no. 5, p. 1914.

    Article  PubMed  CAS  Google Scholar 

  4. Tsygan, V.N., Skalny, A.V., and Makeeva, E.G., Sport. Immunitet. Pitanie (Sport, Immunity, and Nutrition), St. Petersburg: ELBI, 2012.

    Google Scholar 

  5. Hinton, P.S., Iron and the endurance athlete, Appl. Physiol., Nutr., Metab., 2014, vol. 39, no. 9, p. 1012.

    Article  CAS  Google Scholar 

  6. Kim, S.H., Kim, H.Y.P., Kim, W.K., and Park, O.J., Nutritional status, iron-deficiency-related indices, and immunity of female athletes, Nutrition, 2002, vol. 18, no. 1, p. 86.

    Article  PubMed  CAS  Google Scholar 

  7. Zaitseva, I.P., Arshinov, N.P., Meshcheryakov, S.I., et al., The balance of iron and copper in the cadets of the military school with physical activity and the next day of rest in different times of the year, Voen.-Med. Zh., 2013, vol. 334, no. 3, p. 36.

    PubMed  CAS  Google Scholar 

  8. Zaitseva, I.P., Skalny, A.A., Tinkov, A.A., et al., Blood essential trace elements and vitamins in students with different physical activity, Pak. J. Nutr., 2015, vol. 14, no. 10, p. 721.

    Article  CAS  Google Scholar 

  9. Moll, R. and Davis, B., Iron, vitamin B 12 and folate, Medicine (London), 2017, vol. 45, no. 4, p. 198.

    Article  Google Scholar 

  10. Pietrangelo, A., Dierssen, U., Valli, L., et al., STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo, Gastroenterology, 2007, vol. 132, no. 1, p. 294.

    Article  PubMed  CAS  Google Scholar 

  11. Andrews, N.C., The iron transporter DMT1, Int. J. Biochem. Cell Biol., 1999, vol. 31, no. 10, p. 991.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, D., Song, Y., Li J., et al., Structure and metal ion binding of the first transmembrane domain of DMT1, Biochim. Biophys. Acta, Biomembr., 2011, vol. 1808, no. 6, p. 1639.

    Article  CAS  Google Scholar 

  13. Shawki, A., Knight, P.B., Maliken, B.D., et al., H-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics, Curr. Top. Membr., 2012, vol. 70, p. 169.

    Article  PubMed  CAS  Google Scholar 

  14. Fleming, M.D., Romano, M.A., Su, M.A., et al., Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, p. 1148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nairz, M., Theurl, I., Swirski, F.K., and Weiss, G., “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels, Pflüegers Arch., 2017, vol. 469, nos. 3–4, p. 397.

    Article  CAS  Google Scholar 

  16. Gunshin, H., Mackenzie, B., Berger, U.V., et al., Cloning and characterization of a mammalian proton-coupled metal-ion transporter, Nature, 1997, vol. 388, no. 6641, p. 482.

    Article  PubMed  CAS  Google Scholar 

  17. Garrick, M.D., Singleton, S.T., Vargas, F., et al., DMT1: which metals does it transport? Biol. Res., 2006, vol. 39, no. 1, p. 79.

    Article  PubMed  CAS  Google Scholar 

  18. Bjørklund, G., Aaseth, J., Skalny, A.V., et al., Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency, J. Trace Elem. Med. Biol., 2017, vol. 41, p. 41.

    Article  PubMed  CAS  Google Scholar 

  19. Noë, L., Huynh-Delerme, C., Guérin, T., et al., Cadmium accumulation and interactions with zinc, copper, and manganese, analyzed by ICP-MS in a long-term Caco-2 TC7 cell model, Biometals, 2006, vol. 19, no. 5, p. 473.

    Article  CAS  Google Scholar 

  20. Ganz, T., Systemic iron homeostasis, Physiol. Rev., 2013, vol. 93, no. 4, p. 1721.

    Article  PubMed  CAS  Google Scholar 

  21. McKie, A.T., Barrow, D., Latunde-Dada, G.O., et al., An iron-regulated ferric reductase associated with the absorption of dietary iron, Science, 2001, vol. 291, no. 5509, p. 1755.

    Article  PubMed  CAS  Google Scholar 

  22. Luo, X., Hill, M., Johnson, A., and Latunde-Dada, G.O., Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells, Biochim. Biophys. Acta, Gen. Subj., 2014, vol. 1840, no. 1, p. 106.

    Article  CAS  Google Scholar 

  23. Lane, D.J., Bae, D.H., Merlot, A.M., et al., Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation, Nutrients, 2015, vol. 7, no. 4, p. 2274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vanoaica, L., Darshan, D., Richman, L., et al., Intestinal ferritin H is required for an accurate control of iron absorption, Cell Metab., 2010, no. 12, p. 273.

  25. Roecker, L., Meier-Buttermilch, R., Brechtel, L., et al., Iron-regulatory protein hepcidin is increased in female athletes after a marathon, Eur. J. Appl. Physiol., 2005, vol. 95, nos. 5–6, p. 569.

    Article  PubMed  CAS  Google Scholar 

  26. Przybyszewska, J. and Żekanowska, E., The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract, Przegl. Gastroenterol., 2014, vol. 9, no. 4, p. 208.

    CAS  Google Scholar 

  27. Khan, A.A. and Quigley, J.G., Control of intracellular heme levels: heme transporters and heme oxygenases, Biochim. Biophys. Acta, Mol. Cell Res., 2011, vol. 1813, no. 5, p. 668.

    CAS  Google Scholar 

  28. Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C., Two to tango: regulation of Mammalian iron metabolism, Cell, 2010, vol. 142, no. 1, p. 24.

    Article  PubMed  CAS  Google Scholar 

  29. Finazzi, D. and Arosio, P., Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration, Arch. Toxicol., 2014, vol. 88, no. 10, p. 1787.

    Article  PubMed  CAS  Google Scholar 

  30. Tomiya, A., Aizawa, T., Nagatomi, R., et al., Myofibers express IL-6 after eccentric exercise, Am. J. Sports Med., 2004, vol. 32, no. 2, p. 503.

    Article  PubMed  Google Scholar 

  31. Shi, H., Bencze, K.Z., Stemmler, T.L., and Philpott, C.C., A cytosolic iron chaperone that delivers iron to ferritin, Science, 2008, vol. 320, no. 5880, p. 1207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Donovan, A., Lima, C.A., Pinkus, J.L., et al., The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis, Cell Metab., 2005, vol. 1, no. 3, p. 191.

    Article  PubMed  CAS  Google Scholar 

  33. Drakesmith, H., Nemeth, E., and Ganz, T., Ironing out ferroportin, Cell Metab., 2015, vol. 22, no. 5, p. 777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mitchell, C.J., Shawki, A., Ganz, T., et al., Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc, Am. J. Physiol.-Cell Physiol., 2014, vol. 306, no. 5, p. C450.

    Article  PubMed  CAS  Google Scholar 

  35. Wick, M. and Lehmann, P., in Clinical Aspects and Laboratory Iron Metabolism, Anemias, New York: Springer-Verlag, 2003.

    Book  Google Scholar 

  36. Kosman, D.J., Redox cycling in iron uptake, efflux, and trafficking, J. Biol. Chem., 2010, vol. 285, no. 35, p. 26729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vashchenko, G. and MacGillivray, R.T., Multi-copper oxidases and human iron metabolism, Nutrients, 2013, vol. 5, no. 7, p. 2289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fuqua, B.K., Lu, Y., Darshan, D., et al., The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice, PLoS One, 2014, vol. 9, no. 6, p. e98792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Duck, K.A. and Connor, J.R., Iron uptake and transport across physiological barriers, Biometals, 2016, vol. 29, no. 4, p. 573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gkouvatsos, K., Papanikolaou, G., and Pantopoulos, K., Regulation of iron transport and the role of transferrin, Biochim. Biophys. Acta, Gen. Subj., 2012, vol. 1820, no. 3, p. 188.

    Article  CAS  Google Scholar 

  41. Vincent, J.B. and Love, S., The binding and transport of alternative metals by transferrin, Biochim. Biophys. Acta, Gen. Subj., 2012, vol. 1820, no. 3, p. 362.

    Article  CAS  Google Scholar 

  42. Hider, R.C., Nature of nontransferrin-bound iron, Eur. J. Clin. Invest., 2002, vol. 32, no. 1, p. 50.

    Article  PubMed  CAS  Google Scholar 

  43. Brissot, P., Ropert, M., Le Lan, C., and Loréal, O., Non-transferrin bound iron: a key role in iron overload and iron toxicity, Biochim. Biophys. Acta, Gen. Subj., 2012, vol. 1820, no. 3, p. 403.

    Article  CAS  Google Scholar 

  44. Wilkinson, N. and Pantopoulos, K., The IRP/IRE system in vivo: insights from mouse models, Front. Pharmacol., 2014, no. 5, p. 176.

  45. Beard, J. and Han, O., Systemic iron status, Biochim. Biophys. Acta, Gen. Subj., 2009, vol. 1790, no. 7, p. 584.

    Article  CAS  Google Scholar 

  46. Rishi, G., Wallace, D.F., and Subramaniam, V.N., Hepcidin: regulation of the master iron regulator, Biosci. Rep., 2015, vol. 35, no. 3, p. e00192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ruchala, P. and Nemeth, E., The pathophysiology and pharmacology of hepcidin, Trends Pharmacol. Sci., 2014, vol. 35, no. 3, p. 155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Park, C.H., Valore, E.V., Waring, A.J., and Ganz, T., Hepcidin, a urinary antimicrobial peptide synthesized in the liver, J. Biol. Chem., 2001, vol. 276, no. 11, p. 7806-10.

    Article  PubMed  CAS  Google Scholar 

  49. McGown, C., Birerdinc, A., and Younossi, Z.M., Adipose tissue as an endocrine organ, Clin. Liver Dis., 2014, vol. 18, no. 1, p. 41.

    Article  PubMed  Google Scholar 

  50. Michels, K., Nemeth, E., Ganz, T., and Mehrad, B., Hepcidin and host defense against infectious diseases, PLoS Pathog., 2015, vol. 11, no. 8, p. e1004998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hubler, M.J., Peterson, K.R., and Hasty, A.H., Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol. Metab., 2015, vol. 26, no. 2, p. 101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Collins, J.F., Wessling-Resnick, M., and Knutson, M.D., Hepcidin regulation of iron transport, J. Nutr., 2008, vol. 138, no. 11, p. 2284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Arosio, P., New signaling pathways for hepcidin regulation, Blood, 2014, vol. 123, no. 10, p. 1433.

    Article  PubMed  CAS  Google Scholar 

  54. Wrighting, D.M. and Andrews, N.C., Interleukin-6 induces hepcidin expression through STAT3, Blood, 2006, vol. 108, no. 9, p. 3204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Truksa, J., Peng, H., Lee, P., and Beutler, E., Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 27, p. 10289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lane, D.J., Huang, M.L.H., and Richardson, D.R., Hepcidin, show some self-control! How the hormone of iron metabolism regulates its own expression, Biochem. J., 2013, vol. 452, no. 2, p. e3.

    Article  PubMed  CAS  Google Scholar 

  57. Ganz, T. and Nemeth, E., Hepcidin and iron homeostasis, Biochim. Biophys. Acta, Mol. Cell Res., 2012, vol. 1823, no. 9, p. 1434.

    CAS  Google Scholar 

  58. Qiao, B., Sugianto, P., Fung, E., et al., Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination, Cell Metab., 2012, vol. 15, no. 6, p. 918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. De Domenico, I., Ward, D.M., Langelier, C., et al., The molecular mechanism of hepcidin-mediated ferroportin down-regulation, Mol. Biol. Cell, 2007, vol. 18, no. 7, p. 2569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ross, S.L., Tran, L., Winters, A., et al., Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT, Cell Metab., 2012, vol. 15, no. 6, p. 905.

    Article  PubMed  CAS  Google Scholar 

  61. Rivera, S., Liu, L., Nemeth, E., et al., Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia, Blood, 2005, vol. 105, no. 4. P. 1797.

    Article  PubMed  CAS  Google Scholar 

  62. Nikonorov, A.A., Skalnaya, M.G., Tinkov, A.A., and Skalny, A.V., Mutual interaction between iron homeostasis and obesity pathogenesis, J. Trace Elem. Med. Biol., 2015, vol. 30, p. 207.

    Article  PubMed  CAS  Google Scholar 

  63. Bergamaschi, G., Di Sabatino, A., Pasini, A., et al., Intestinal expression of genes implicated in iron absorption and their regulation by hepcidin, Clin. Nutr., 2017, vol. 36, no. 5, p. 1427.

    Article  PubMed  CAS  Google Scholar 

  64. Vyoral, D. and Petrak, J., Therapeutic potential of hepcidin-the master regulator of iron metabolism, Pharmacol. Res., 2017, no. 115, p. 242.

  65. Peeling, P., Dawson, B., Goodman, C., et al., Effects of exercise on hepcidin response and iron metabolism during recovery, Int. J. Sport Nutr., 2009, vol. 19, no. 6, p. 583.

    CAS  Google Scholar 

  66. Peeling, P., Sim, M., Badenhorst, C.E., et al., Iron status and the acute post-exercise hepcidin response in athletes, PLoS One, 2014, vol. 9, no. 3, p. e93002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Détivaud, L., Nemeth, E., Boudjema, K., et al., Hepcidin levels in humans are correlated with hepatic iron stores, hemoglobin levels, and hepatic function, Blood, 2005, vol. 106, no. 2, p. 746.

    Article  PubMed  CAS  Google Scholar 

  68. Peeling, P., Dawson, B., Goodman, C., et al., Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity, Eur. J. Appl. Physiol., 2009, vol. 106, no. 1, p. 51.

    Article  PubMed  Google Scholar 

  69. Auersperger, I., Škof, B., Leskošek, B., et al., Exercise-induced changes in iron status and hepcidin response in female runners, PloS One, 2013, vol. 8, no. 3, p. e58090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ma, X., Patterson, K.J., Gieschen, K.M., and Bodary, P.F., Are serum hepcidin levels chronically elevated in collegiate female distance runners, Int. J. Sport Nutr. Exercise Metab., 2013, vol. 23, no. 5, p. 513.

    Article  CAS  Google Scholar 

  71. Peeling, P., Exercise as a mediator of hepcidin activity in athletes, Eur. J. Appl. Physiol., 2010, vol. 110, no. 5, p. 877.

    Article  PubMed  CAS  Google Scholar 

  72. Raschke, S. and Eckel, J., Adipo-myokines: two sides of the same coin-mediators of inflammation and mediators of exercise, Mediators Inflammation, 2013, vol. 2013, art. ID 320724.

    Article  CAS  Google Scholar 

  73. Elkington, L.J., Gleeson, M., Pyne, D.B., Callister, R., and Wood, L.G., Inflammation and immune function: can antioxidants help the endurance athlete? in Antioxidants in Sport Nutrition, Lamprecht, M., Ed., Boca Raton, Fl: CRC Press, 2015, chap. 11.

  74. Mauer, J., Denson, J.L., and Brüning, J.C., Versatile functions for IL-6 in metabolism and cancer, Trends Immunol., 2015, vol. 36, no. 2, p. 92.

    Article  PubMed  CAS  Google Scholar 

  75. Gleeson, M., Immune function in sport and exercise, J. Appl. Physiol., 2007, vol. 103, no. 2, p. 693.

    Article  PubMed  CAS  Google Scholar 

  76. Ostrowski, K., Schjerling, P., and Pedersen, B.K. Physical activity and plasma interleukin-6 in humans-effect of intensity of exercise, Eur. J. Appl. Physiol., 2000, vol. 83, no. 6, p. 512.

    Article  PubMed  CAS  Google Scholar 

  77. Banzet, S., Sanchez, H., Chapot, R., et al., Interleukin-6 contributes to hepcidin mRNA increase in response to exercise, Cytokine, 2012, vol. 58, no. 2, p. 158.

    Article  PubMed  CAS  Google Scholar 

  78. Liu, Y.Q., Duan, X.L., Chang, Y.Z., et al., Molecular analysis of increased iron status in moderately exercised rats, Mol. Cell. Biochem., 2006, vol. 282, nos. 1–2, p. 117.

    Article  PubMed  CAS  Google Scholar 

  79. Steensberg, A., Keller, C., Starkie, R.L., et al., IL-6 and TNF-α expression in, and release from, contracting human skeletal muscle, Am. J. Physiol.: Endocrinol. Metab., 2002, vol. 283, no. 6, p. E1272.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Zaitseva.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, I.P., Tinkov, A.A. & Skalny, A.V. Influence of Physical Activity on the Regulation of Iron Metabolism. Hum Physiol 44, 592–599 (2018). https://doi.org/10.1134/S0362119718050158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718050158

Keywords:

Navigation