Skip to main content
Log in

Characteristics of human saliva proteome and peptidome

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Recent studies on the characteristics of saliva proteome and peptidome greatly expanded our understanding of this biological fluid. Athough many scientists consider saliva to be an ideal biosubstrate in diagnosis of the human body state; currently, the research in this area is at the data accumulation stage. The physiology of saliva and salivary glands, as well as characteristics of interaction between the saliva proteins and the oral cavity microorganisms, has been insufficiently studied yet. The lack of standardization in collecting the saliva samples and in the proteome research protocols, and the requirements for sample representativeness introduce discrepancies in the results obtained by different researchers. Addressing these problems will allow the wide use of saliva proteome as a complex indicator of the functional state of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Tarawneh, S.K., Border, M.B., Dibble, C.F., and Bencharit, S., Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review, OMICS, 2011, vol. 15, no. 6, p. 353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu, S., Loo, J.A., and Wong, D.T., Human saliva proteome analysis and disease biomarker discovery, Expert Rev. Proteomics, 2007, vol. 4, no. 4, p. 531.

    Article  CAS  PubMed  Google Scholar 

  3. Castagnola, M., Cabras, T., Iavarone, F., et al., Topdown platform for deciphering the human salivary proteome, J. Matern.-Fetal Neonat. Med., 2012, vol. 25, suppl. 5, p. 27.

    Article  CAS  Google Scholar 

  4. Schulz, B.L., Cooper-White, J., and Punyadeera, C.K., Saliva proteome research: current status and future outlook, Crit. Rev. Biotechnol., 2013, vol. 33, no. 3, p. 246.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, L., Xiao, H., and Wong, D.T., Salivary biomarkers for clinical applications, Mol. Diagn. Ther., 2009, vol. 13, no. 4, p. 245.

    Article  CAS  PubMed  Google Scholar 

  6. Ai, J.Y., Smith, B., and Wong, D.T., Bioinformatics advances in saliva diagnostics, Int. J. Oral Sci., 2012, vol. 4, no. 2, p. 85.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Choi, M., Saliva diagnostics integrate dentistry into general and preventive health care, Int. J. Prosthodontics, 2010, vol. 23, no. 3, p. 189.

    Google Scholar 

  8. Ruhl, S., The scientific exploration of saliva in the postproteomic era: from database back to basic function, Expert Rev. Proteomics, 2012, vol. 9, no. 1, p. 85.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Spielmann, N. and Wong, D.T., Saliva: diagnostics and therapeutic perspectives, Oral Dis., 2011, vol. 17, no. 4, p. 345.

    Article  CAS  PubMed  Google Scholar 

  10. Cuevas-Córdoba, B. and Santiago-García, J., Saliva: a fluid of study for OMICS, OMICS, 2014, vol. 18, no. 2, p. 87.

    Article  PubMed  Google Scholar 

  11. Kolesov, S.A., Korkotashvili, L.V., Shirokova, N.Yu., et al., Content of epidermal growth factor in biosubstrates and macrophage count in defect healing in children and adolescents with duodenal ulcer disease, Klin. Lab. Diagn., 2010, no. 11, p. 11.

    PubMed  Google Scholar 

  12. Jágr M., Eckhardt, A., Pataridis, S., et al., Proteomics of human teeth and saliva, Physiol. Res., 2014, vol. 63, no. 1, p. 141.

    Google Scholar 

  13. Amado, F.M., Vitorino, R.M., Domingues, P.M., et al., Analysis of the human saliva proteome, Expert Rev. Proteomics, 2005, vol. 2, no. 4, p. 521.

    Article  CAS  PubMed  Google Scholar 

  14. Huq, N.L., Cross, K.J., Ung, M., et al., A review of the salivary proteome and peptidome and saliva-derived peptide therapeutics, Int. J. Pept. Res. Ther., 2007, vol. 13, no. 4, p. 547.

    Article  CAS  Google Scholar 

  15. Schlesinger, D.H., Hay, D.I., and Levine, M.J., Complete primary structure of statherin, a potent inhibitor of calcium phosphate precipitation, from the saliva of the monkey, Macaca arctoides, Int. J. Pept. Protein Res., 1989, vol. 34, no. 5, p. 374.

    CAS  PubMed  Google Scholar 

  16. Amado, F., Lobo, M.J., Domingues, P., et al., Salivary peptidomics, Expert Rev. Proteomics, 2010, vol. 7, no. 5, p. 709.

    Article  CAS  PubMed  Google Scholar 

  17. Messana, I., Cabras, T., Pisano, E., et al., Trafficking and postsecretory events responsible for the formation of secreted human salivary peptides: a proteomics approach, Mol. Cell. Proteomics, 2008, vol. 7, no. 5, p. 911.

    Article  CAS  PubMed  Google Scholar 

  18. Siqueira, W.L. and Dawes, C., The salivary proteome: challenges and perspectives, Proteomics: Clin. Appl., 2011, vol. 5, nos. 11–12, p. 575.

    CAS  Google Scholar 

  19. Oppenheim, F.G., Salih, E., Siqueira, W.L., et al., Salivary proteome and its genetic polymorphisms, Ann. N. Y. Acad. Sci., 2007, vol. 1098, p. 22.

    Article  CAS  PubMed  Google Scholar 

  20. Helmerhorst, E.J. and Oppenheim, F.G., Saliva: a dynamic proteome, J. Dent. Res., 2007, vol. 86, no. 8, p. 680.

    Article  CAS  PubMed  Google Scholar 

  21. Gröschl, M., The physiological role of hormones in saliva, BioEssays, 2009, vol. 31, no. 8, p. 843.

    Article  PubMed  Google Scholar 

  22. Castagnola, M., Cabras, T., Iavarone, F., et al., The human salivary proteome: a critical overview of the results obtained by different proteomic platforms, Expert Rev. Proteomics, 2012, vol. 9, no. 1, p. 33.

    Article  CAS  PubMed  Google Scholar 

  23. Hart, G.W. and Copeland, R.J., Glycomics hits the big time, Cell, 2010, vol. 143, no. 5, p. 672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gröschl, M., Current status of salivary hormone analysis, Clin. Chem., 2008, vol. 54, no. 11, p. 1759.

    Article  PubMed  Google Scholar 

  25. Pfaffe, T., Cooper-White, J., Beyerlein, P., et al., Diagnostic potential of saliva: current state and future applications, Clin. Chem., 2011, vol. 57, no. 5, p. 675.

    Article  CAS  PubMed  Google Scholar 

  26. Loo, J.A., Yan, W., Ramachandran, P., and Wong, D.T., Comparative human salivary and plasma proteomes, J. Dent. Res., 2010, vol. 89, no. 10, p. 1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan, W., Apweiler, R., Balgley, B.M., et al., Systematic comparison of the human saliva and plasma proteomes, Proteomics: Clin. Appl., 2009, vol. 3, no. 1, p. 116.

    CAS  Google Scholar 

  28. Caporossi, L., Santoro, A., and Papaleo, B., Saliva as an analytical matrix: state of the art and application for biomonitoring, Biomarkers, 2010, vol. 15, no. 6, p. 475.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, Z.Z., Wang, J.G., and Zhang, X.L., Diagnostic model of saliva protein finger print analysis of patients with gastric cancer, World J. Gastroenterol., 2009, vol. 15, no. 7, p. 865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pisano, E., Cabras, T., Montaldo, C., et al., Peptides of human gingival crevicular fluid determined by HPLCESI- MS, Eur. J. Oral Sci., 2005, vol. 113, no. 6, p. 462.

    Article  CAS  PubMed  Google Scholar 

  31. Castagnola, M., Cabras, T., Vitali, A., et al., Biotechnological implications of the salivary proteome, Trends Biotechnol., 2011, vol. 29, no. 8, p. 409.

    Article  CAS  PubMed  Google Scholar 

  32. Castagnola, M., Inzitari, R., Fanali, C., et al., The surprising composition of the salivary proteome of preterm human newborn, Mol. Cell. Proteomics, 2011, vol. 10, no. 1, p. M:110.003467.

    Article  PubMed  Google Scholar 

  33. Cabras, T., Pisano, E., Boi, R., et al., Age-dependent modifications of the human salivary secretory protein complex, J. Proteome Res., 2009, vol. 8, no. 8, p. 4126.

    Article  CAS  PubMed  Google Scholar 

  34. Fleissig, Y., Reichenberg, E., Redlich, M., et al., Comparative proteomic analysis of human oral fluids according to gender and age, Oral Dis., 2010, vol. 16, no. 8, p. 831.

    Article  CAS  PubMed  Google Scholar 

  35. Qin, Y., Zhong, Y., Zhu, M., et al., Age- and sex-associated differences in the glycopatterns of human salivary glycoproteins and their roles against influenza A virus, J. Proteome Res., 2013, vol. 12, no. 6, p. 2742.

    Article  CAS  PubMed  Google Scholar 

  36. Lukacs, J.R., Sex differences in dental caries experience: clinical evidence, complex etiology, Clin. Oral Invest., 2011, vol. 15, no. 5, p. 649.

    Article  Google Scholar 

  37. Gorr, S.U., Antimicrobial peptides in periodontal innate defense, Front. Oral Biol., 2012, vol. 15, p. 84.

    Article  PubMed  Google Scholar 

  38. Hu, S., Loo, J.A., and Wong, D.T., Human saliva proteome analysis, Ann. N. Y. Acad. Sci., 2007, vol. 1098, p. 323.

    Article  CAS  PubMed  Google Scholar 

  39. Kolenbrander, P.E., Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source, Int. J. Oral Sci., 2011, vol. 3, no. 2, p. 49.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rohmer, L., Hocquet, D., and Miller, S.I., Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis, Trends Microbiol., 2011, vol. 19, no. 7, p. 341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ragunath, C., Manuel, S.G., Venkataraman, V., et al., Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary alpha-amylase in substrate hydrolysis and bacterial binding, J. Mol. Biol., 2008, vol. 384, no. 5, p. 1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varki, A., Nothing in glycobiology makes sense, except in the light of evolution, Cell, 2006, vol. 126, no. 5, p. 841.

    CAS  Google Scholar 

  43. Doucet, A., Butler, G.S., Rodriguez, D., et al., Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome, Mol. Cell. Proteomics, 2008, vol. 7, no. 10, p. 1925.

    Article  CAS  PubMed  Google Scholar 

  44. Villanueva, J., Shaffer, D.R., Philip, J., et al., Differential exoprotease activities confer tumor-specific serum peptidome patterns, J. Clin. Invest., 2006, vol. 116, no. 1, p. 271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Villanueva, J., Martorella, A.J., Lawlor, K., et al., Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age, Mol. Cell. Proteomics, 2006, vol. 5, no. 10, p. 1840.

    Article  CAS  PubMed  Google Scholar 

  46. Boonen, K., Landuyt, B., Baggerman, G., et al., Peptidomics: the integrated approach of ms, hyphenated techniques and bioinformatics for neuropeptide analysis, J. Sep. Sci., 2008, vol. 31, no. 3, p. 427.

    CAS  PubMed  Google Scholar 

  47. Helmerhorst, E.J., Sun, X., Salih, E., and Oppenheim, F.G., Identification of Lys-Pro-Gln as a novel cleavage site specificity of saliva-associated proteases, J. Biol. Chem., 2008, vol. 283, no. 29, p. 19957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vitorino, R., Barros, A., Caseiro, A., et al., Towards defining the whole salivary peptidome, Proteomics: Clin. Appl., 2009, vol. 3, no. 5, p. 528.

    CAS  Google Scholar 

  49. Kennedy, S., Davis, C., Abrams, W.R., et al., Submandibular salivary proteases: lack of a role in anti-HIV activity, J. Dent. Res., 1998, vol. 77, no. 7, p. 1515.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, T., Yu, W.H., Izard, J., Baranova, O.V., et al., The human oral microbiome database: a web accessible resource for investigating oral microbe taxonomic and genomic information, Database, 2010, vol. 2010, p. baq013.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Balog, C.I., Hensbergen, P.J., Derks, R., et al., Novel automated biomarker discovery work flow for urinary peptidomics, Clin. Chem., 2009, vol. 55, no. 1, p. 117.

    Article  CAS  PubMed  Google Scholar 

  52. Merchant, M.L., Perkins, B.A., Boratyn, G.M., et al., Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria, J. Am. Soc. Nephrol., 2009, vol. 20, wno. 9, p. 2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hook, V., Funkelstein, L., Lu, D., et al., Proteases for processing proneuropeptides into peptide neurotransmitters and hormones, Annu. Rev. Pharmacol. Toxicol., 2008, no. 48, p. 393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Trindade, F., Amado, F., Pinto da Costa, J., et al., Salivary peptidomic as a tool to disclose new potential antimicrobial peptides, J. Proteomics, 2015, no. 115, p. 49.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kolesov.

Additional information

Original Russian Text © S.A. Kolesov, E.N. Fedulova, A.E. Lavrova, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 4, pp. 130–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesov, S.A., Fedulova, E.N. & Lavrova, A.E. Characteristics of human saliva proteome and peptidome. Hum Physiol 42, 463–468 (2016). https://doi.org/10.1134/S0362119716040058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716040058

Keywords

Navigation