Skip to main content
Log in

Effective Lower Bounds on the Matrix Rank and Their Applications

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

We propose an efficiently verifiable lower bound on the rank of a sparse fully indecomposable square matrix that contains two non-zero entries in each row and each column. The rank of this matrix is equal to its order or differs from it by one. Bases of a special type are constructed in the spaces of quadratic forms in a fixed number of variables. The existence of these bases allows us to substantiate a heuristic algorithm for recognizing whether a given affine subspace passes through a vertex of a multidimensional unit cube. In the worst case, the algorithm may output a computation denial warning; however, for the general subspace of sufficiently small dimension, it correctly rejects the input. The algorithm is implemented in Python. The running time of its implementation is estimated in the process of testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gevorkyan, M.N., Korolkova, A.V., Kulyabov, D.S., and Sevast’yanov, L.A., A modular extension for a computer algebra system, Program. Comput. Software, 2020, vol. 46, no. 2, pp. 98–104.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chistov, A.L., Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic, Lect. Notes Comput. Sci., 1985, vol. 199, pp. 63–69. https://doi.org/10.1007/BFb0028792

    Article  MathSciNet  MATH  Google Scholar 

  3. Mulmuley, K., A fast parallel algorithm to compute the rank of a matrix over an arbitrary field, Combinatorica, 1987, vol. 7, no. 1, pp. 101–104. https://doi.org/10.1007/BF02579205

    Article  MathSciNet  MATH  Google Scholar 

  4. Malaschonok, G. and Tchaikovsky, I., About big matrix inversion, Comput. Algebra, Abramov, S.A. and Sevastyanov, L.A., Eds., Moscow: MAKS Press, 2021, pp. 81–84. https://doi.org/10.29003/m2019.978-5-317-06623-9

    Book  Google Scholar 

  5. Malaschonok, G.I. and Sidko, A.A., Supercomputer environment for recursive matrix algorithms, Program. Comput. Software, 2022, vol. 48, pp. 90–101.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheung, H.Y., Kwok, T.C., and Lau, L.C., Fast matrix rank algorithms and applications, J. ACM, 2013, vol. 60, no. 5, pp. 1–25. https://doi.org/10.1145/2528404

    Article  MathSciNet  MATH  Google Scholar 

  7. Abdeljaoued, J. and Malaschonok, G.I., Efficient algorithms for computing the characteristic polynomial in a domain, J. Pure Appl. Algebra, 2001, vol. 156, pp. 127–145. https://doi.org/10.1016/S0022-4049(99)00158-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Pereslavtseva, O.N., Calculation of the characteristic polynomial of a matrix, Discrete Math. Appl., 2011, vol. 21, no. 1, pp. 109–128.

    Article  MathSciNet  MATH  Google Scholar 

  9. Neiger, V. and Pernet, C., Deterministic computation of the characteristic polynomial in the time of matrix multiplication, J. Complexity, 2021, vol. 67, no. 101572, pp. 1–35. https://doi.org/10.1016/j.jco.2021.101572

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., On nonsingularity of circulant matrices, Linear Algebra Appl., 2021, vol. 612, pp. 162–176. https://doi.org/10.1016/j.laa.2020.12.010

    Article  MathSciNet  MATH  Google Scholar 

  11. Alaev, P.E. and Selivanov, V.L., Fields of algebraic numbers computable in polynomial time. I, Algebra Logic, 2020, vol. 58, pp. 447–469.

    Article  MathSciNet  MATH  Google Scholar 

  12. Alaev, P.E. and Selivanov, V.L., Fields of algebraic numbers computable in polynomial time. II, Algebra Logic, 2022, vol. 60, pp. 349–359.

    Article  MathSciNet  MATH  Google Scholar 

  13. Harris, J. and Tu, L.W., On symmetric and skew-symmetric determinantal varieties, Topology, 1984, vol. 23, no. 1, pp. 71–84. https://doi.org/10.1016/0040-9383(84)90026-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Harris, J., Algebraic Geometry, New York: Springer, 1992. https://doi.org/10.1007/978-1-4757-2189-8

    Book  MATH  Google Scholar 

  15. Rubei, E., Affine subspaces of matrices with constant rank, Linear Algebra Appl., 2022, vol. 644, no. 1, pp. 259–269. https://doi.org/10.1016/j.laa.2022.03.002

    Article  MathSciNet  MATH  Google Scholar 

  16. Seliverstov, A.V., Binary solutions to large systems of linear equations, Prikl. Diskretnaya Mat., 2021, no. 52, pp. 5–15. https://doi.org/10.17223/20710410/52/1

  17. Kuzyurin, N.N., Polynomial-average algorithm in integer linear programming, Sib. Zh. Issled. Oper., 1994, vol. 1, no. 3, pp. 38–48.

    MathSciNet  MATH  Google Scholar 

  18. Kuzyurin, N.N., An integer linear programming algorithm polynomial in the average case, Discrete Analysis and Operations Research, Korshunov, A.D., Ed., Dordrecht: Springer, 1996, vol. 355, pp. 143–152. https://doi.org/10.1007/978-94-009-1606-7

    Book  Google Scholar 

  19. Pan, Y. and Zhang, F., Solving low-density multiple subset sum problems with SVP oracle, J. Syst. Sci. Complexity, 2016, vol. 29, pp. 228–242. https://doi.org/10.1007/s11424-015-3324-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Rybalov, A.N., On the generic complexity of the subset sum problem for semigroups of integer matrices, Prikl. Diskretnaya Mat., 2020, no. 50, pp. 118–126. https://doi.org/10.17223/20710410/50/9

  21. Rybalov, A.N., On the generic complexity of the occurrence problem for semigroups of integer matrices, Prikl. Diskretnaya Mat., 2022, no. 55, pp. 95–101. https://doi.org/10.17223/20710410/55/7

  22. Seliverstov, A.V., Heuristic algorithms for recognition of some cubic hypersurfaces, Program. Comput. Software, 2021, vol. 47, no. 1, pp. 50–55.

    Article  MathSciNet  MATH  Google Scholar 

  23. Minc, H., (0, 1)-matrices with minimal permanents, Isr. J. Math., 1973, vol. 15, pp. 27–30. https://doi.org/10.1007/BF02771770

    Article  MathSciNet  MATH  Google Scholar 

  24. Seliverstov, A.V. and Lyubetsky, V.A., About forms equal to zero at each vertex of a cube, J. Commun. Technol. Electron., 2012, vol. 57, no. 8, pp. 892–895. https://doi.org/10.1134/S1064226912080049

    Article  Google Scholar 

  25. Schwartz, J.T., Fast probabilistic algorithms for verification of polynomial identities, J. ACM, 1980, vol. 27, no. 4, pp. 701–717. https://doi.org/10.1145/322217.322225

    Article  MathSciNet  MATH  Google Scholar 

  26. Harris, C.R., Millman, K.J., van der Walt, S.J., et al., Array programming with NumPy, Nature, 2020, vol. 585, no. 7825, pp. 357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  27. Chen, Y.A. and Gao, X.S., Quantum algorithm for Boolean equation solving and quantum algebraic attack on cryptosystems, J. Syst. Sci. Complexity, 2022, vol. 35, pp. 373–412. https://doi.org/10.1007/s11424-020-0028-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to an anonymous referee for useful comments that made it possible to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Zverkov or A. V. Seliverstov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Kornienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverkov, O.A., Seliverstov, A.V. Effective Lower Bounds on the Matrix Rank and Their Applications. Program Comput Soft 49, 441–447 (2023). https://doi.org/10.1134/S0361768823020160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768823020160

Navigation