Skip to main content
Log in

Coordinate-Independent Definition of Relative Velocity in Pseudo-Riemannian Space-Time: Implications for Special Cases

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Using the general solution that we recently obtained for the coordinate-independent definition of a relative velocity of a luminous source as measured along the observer’s line of sight in generic pseudo-Riemannian space-time, in the present article we invoke important implications for test particles and observers in several instructive cases. We consider a test particle as a luminous object, otherwise, if it is not, we assume that a luminous source is attached to it, which has neither mass nor volume. We calculate the relative velocities in special metrics: the Minkowski metric, the test particle and observer at rest in an arbitrary stationary metric, a uniform gravitational field, a rotating reference frame, the Schwarzschild metric, a Kerr-type metrics, and the spatially homogeneous and isotropic Robertson–Walker space-time of the standard cosmological model. In the last case, it leads to a remarkable cosmological consequence that the resulting, so-called, kinetic recession velocity of an astronomical object is always subluminal even for large redshifts of order one or more, so that it does not violate the fundamental physical principle of causality. We also calculate the carrying-away measure of a galaxy at redshift \(z\) by the expansion of space, which proves, in particular, that the cosmological expansion of a flat 3D space is fundamentally different from the kinematics of galaxies moving in a nonexpanding flat 3D space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. V. J. Bolós and D. Klein, “Relative velocities for radial motion in expanding Robertson–Walker space-times,” Gen. Rel. Grav. 44 1361 (2012).

    Article  ADS  MATH  Google Scholar 

  2. V. J. Bolós, V. Liern and J. Olivert, “Relativistic simultaneity and causality,” Int. J. Theor. Phys. 41, 1007 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. J. Bolós, “Lightlike simultaneity, comoving observers and distances in general relativity,” J. Geom. Phys. 56, 813 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. V. J. Bolós, “Intrinsic definitions of “relative velocity” in general relativity,” Commun. Math. Phys. 273, 217 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. D. Klein and P. Collas, “Recessional velocities and Hubble’s law in Schwarzschild-de Sitter space,” Phys. Rev. D 81 063518 (2010).

    Article  ADS  Google Scholar 

  6. D. Klein and E. Randles, “Fermi coordinates, simultaneity, and expanding space in Robertson–Walker cosmologies,” Ann. Henri Poincaré 12, 303 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. G. Ter-Kazarian, “Unique definition of relative velocity of luminous source as measured along the observer’s line-of-sight in a pseudo-Riemannian space-time,” ComBAO 68, issue 1, 38 (2021).

    Article  ADS  Google Scholar 

  8. G. Ter-Kazarian, Sects. 18, 19 from “A new look at some aspects of geometry, particle physics, inertia, radiation and cosmology,” ComBAO 68, issue 2, 311 (2021).

    Article  ADS  Google Scholar 

  9. J. L. Synge, Relativity: The General Theory (North-Hollaand, Amsterdam, 1960).

    MATH  Google Scholar 

  10. G. Ter-Kazarian “On the kinetic recession velocities of astronomical objects,” Grav. Cosmol. 28 (2), 186 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T. Padmanabhan, Structure Formation in the Universe (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  12. P. J. E. Peebles, Principles of Physical Cosmology (Princeton Univ. Press, Princeton, 1993).

    MATH  Google Scholar 

  13. E. R. Harrison, “The redshift-distance and velocity-distance laws,” Astroph. J. 403 28 (1993).

    Article  ADS  Google Scholar 

  14. E. R. Harrison, “Mining energy in an expanding universe,” Astroph. J. 446 63 (1995).

    Article  ADS  Google Scholar 

  15. J. A. Peacock, Cosmological Physics (Cambridge Univ. Press, Cambridge (Ninth printing with corrections), 2010).

  16. J. V. Narlikar, “Spectral shifts in general relativity,” Am. J. Phys. 62, 903 (1994).

    Article  ADS  Google Scholar 

  17. A. B. Whiting, “The expansion of space: Free particle motion and the cosmological redshift,” The Observatory 124, 174 (2004); astro-ph/0404095.

    ADS  Google Scholar 

  18. Ø. Grøn and Ø. Elgarøy, “Is space expanding in the Friedmann universe models?,” Am. J. Phys. 75, 151 (2007).

    Article  ADS  Google Scholar 

  19. E. F. Bunn and D. W. Hogg, “The kinematic origin of the cosmological redshift,” Am. J. Phys. 77, 6888 (2009).

    Article  Google Scholar 

  20. D. N. Page, “No superluminal expansion of the universe,” Class. Quantum Grav. 26 127001 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ø. Grøn, “A general equation for the Doppler effect,” Eur. J. Phys. 1, 186 (1980).

    Article  Google Scholar 

  22. Ø. Grøn, “The weight of extended bodies in a gravitational field with flat space-time,” Found. Phys. 9, 501 (1979).

    Article  ADS  Google Scholar 

  23. D. M. Greenberger and A. W. Overhauser, “Coherence effects in neutron diffraction and gravity experiments,” Rev. Mod. Phys. 51, 43 (1979).

    Article  ADS  Google Scholar 

  24. C. Möller, The Theory of Relativity (Oxford: OUP) (1952).

    MATH  Google Scholar 

  25. J. Jaffe and R. F. C. Vessot, “Feasibility of a second-order gravitational redshift experiment,” Phys. Rev. D 14, 3294 (1976).

    Article  ADS  Google Scholar 

  26. C. Fanton, M. Calvani, F. de Felice, and A. Cadez, “Detecting accretion disks in active galactic nuclei,” PASJ 49, 159 (1997).

    Article  ADS  Google Scholar 

  27. I. Asaoka, “X-ray spectra at infinity from a relativistic accretion disk around a Kerr black hole,” PASJ 41, 763 (1989).

    ADS  Google Scholar 

  28. C. T. Cunningham, “The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole,” Astroph. J. 202 788 (1998).

    Article  ADS  Google Scholar 

  29. L. X. Li, E. R. Zimmerman, R. Narayan, and J. E. McClintock, “Multitemperature blackbody spectrum of a thin accretion disk around a Kerr black hole: model computations and comparison with observations,” Astroph. J. Suppl. 157, 335 (2005).

    Article  Google Scholar 

  30. T. Schönenbach et al., “Ray-tracing in pseudo-complex General Relativity,” MNRAS 442, 121 (2014).

    Article  ADS  Google Scholar 

  31. S. Cisneros, G. Goedecke, C. Beetle, and M. Engelhardt, “On the Doppler effect for light from orbiting sources in Kerr-type metrics,” MNRAS 448, 2733 (2015).

    Article  ADS  Google Scholar 

  32. J. B. Hartle, Gravity, An Introduction to Einstein’s General Relativity (Addison–Wesley, Reading, MA, 2003).

    Book  Google Scholar 

  33. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford Univ. Press, New York, NY, 1983).

    MATH  Google Scholar 

  34. B. O’Neill, The Geometry of Kerr Black Holes (A. K. Peters, Wellesley, MA, 1995).

    MATH  Google Scholar 

  35. C. W. Misner, K. S. Thorne, and J. A. Wheeler Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  36. H. P. Robertson, “Kinematics and world structure,” Astroph. J. 82 284 (1935).

    Article  ADS  MATH  Google Scholar 

  37. A. G. Walker, “On Milne’s theory of world structure,” Proc. Lond. Math. Soc. 42, 90 (1936).

    ADS  MathSciNet  MATH  Google Scholar 

  38. M. A. Abramowicz, S. Bajtlik, J.-P. Lasota, and A. Moudens, “Eppur si espande,” Acta Astr. 57, 139 (2007).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The very helpful comments of the anonymous referee that have essentially clarified the manuscript are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ter-Kazarian.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ter-Kazarian, G. Coordinate-Independent Definition of Relative Velocity in Pseudo-Riemannian Space-Time: Implications for Special Cases. Gravit. Cosmol. 29, 62–73 (2023). https://doi.org/10.1134/S0202289323010103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323010103

Navigation