Skip to main content
Log in

Measuring the Perigee Advance of an Artificial Satellite under the Angular Momentum and Earth’s Electromagnetic Field Influence

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The current paper is concerned with the orbital precession of a satellite moving in an inclined plane to the equatorial plane, as defined in the Kerr–Newman field. Based on the angular momentum and the charge of the field generated by the Earth, a numerical value of the perigee advance of some artificial satellites is calculated. Due to the effect of the angular momentum and the Earth’s electromagnetic field, the stability of the satellite is examined. The achieved results are compared with those obtained by the Beacon Explorer C, LAGEOS, LAGEOS II, LARES, GPS, and GRACE A, B satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Valk, A. Lemaître, and F. Deleflie, “Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence,” Adv. Space Res. 43 (7), 1070 (2010).

    Article  ADS  Google Scholar 

  2. G. Beutler, A. Jäggi, and L. Mervart, “The celestial mechanics approach: theoretical foundations,” J. Geod. 84 (10), 605 (2010).

    Article  ADS  Google Scholar 

  3. D. J. Scheeres, “Orbital mechanics about small bodies,” Acta Astronautica 72, 1 (2012).

    Article  ADS  Google Scholar 

  4. D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics (Elsevier, 2013).

    MATH  Google Scholar 

  5. M. Wolff, “Direct measurements of the Earth’s gravitational potential using a satellite pair,” J. Geophys. Res. 74 (22), 5295 (1969).

    Article  ADS  Google Scholar 

  6. L. Iorio, “The impact of the static part of the Earth’s gravity field on some tests of general relativity with satellite laser ranging,” Celest. Mech. Dyn. Astron. 86, 277 (2003).

    Article  ADS  MATH  Google Scholar 

  7. L. Iorio, “Constraining the electric charges of some astronomical bodies in Reissner–Nordström spacetimes and generic \(r^{-2}\) type power-law potentials from orbital motions,” Gen, Rel. Grav. 44 (7), 1753 (2012).

    Article  ADS  MATH  Google Scholar 

  8. L. Iorio, “Editorial for the special issue 100 years of chronogeometrodynamics: the status of Einstein’s theory of gravitation in its centennial year,” Universe 1 (1), 38 (2015).

    Article  ADS  Google Scholar 

  9. L. Debono and G. F. Smoot, “General relativity and cosmology: unsolved questions and future directions,” Universe 2 (4), 23 (2016).

    Article  ADS  Google Scholar 

  10. R. G. Vishwakarma, “Einstein and beyond: a critical perspective on general relativity,” Universe 2 (2), 11 (2016).

    Article  ADS  Google Scholar 

  11. P. G. Bergmann, Introduction to the Theory of Relativity (New York, Dove Publ., 1978).

    Google Scholar 

  12. J. N. Islam, Rotating Fields in General Relativity (Cambridge Univ. Press, 1985).

    Book  MATH  Google Scholar 

  13. P. Pradhan, “Circular geodesics in the Kerr–Newman–Taub–NUT spacetime,” Class. Quantum Grav. 32 (16), 165001 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. A. Bakry, G. M. Moatimid, and M. M. Tantawy, “Perihelion advance and stability criterion of a spinning charged test particle in Reissner-Nordström field: Application in earth orbit,” Int. J. Mod. Phys. A 36 (10), 2150073 (2021).

    Article  ADS  Google Scholar 

  15. J. Plebanski and A. Krasinski, Introduction to General Relativity and Cosmology (Cambridge University Press, Cambridge, 2006).

    Book  MATH  Google Scholar 

  16. M. I. Wanas and M. A. Bakry, “Notes on applications of general relativity in free space: implication from the motion of a test particle,” Astrophys. Space Sci. 228 (1-2), 203 (1995).

    Article  ADS  MATH  Google Scholar 

  17. A. Avalos-Vargas and G. Ares de Parga, “The precession of the orbit of a test neutral body interacting with a massive charged body,” Euro. Phys. J. Plus 126 (11), 117 (2011).

    Article  Google Scholar 

  18. G. Moatimid, M. A. Bakry, and M. M. Tantawy, “Analysis of an artificial satellite orbit around the Earth under an influence of a rotating gravitational field,” Adv. Space Res. 68 (7), 2727 (2021).

    Article  ADS  Google Scholar 

  19. S. Hergt, A. Shah, and G. Schäfer, “Observables of a test mass along an inclined orbit in a post-Newtonian-approximated Kerr spacetime including the linear and quadratic spin terms,” Phys. Rev. D 111 (2), 021101 (2013).

    ADS  Google Scholar 

  20. C. Jiang and W. Lin, “Post-Newtonian dynamics and orbital precession in Kerr–Newman field,” Euro. Phys. J. Plus 129 (9), 200 (2014).

    Article  Google Scholar 

  21. C. Huang and L. Lin , “Analytical solutions to the four post-Newtonian effects in a near-Earth satellite orbit,” Celest. Mech. Dyn. Astron. 53, 293 (1992).

    Article  ADS  MATH  Google Scholar 

  22. I. Ciufolini, “On a new method to measure the gravitomagnetic field using two orbiting satellites,” Nuovo Cim. A 109 (12), 1709 (1996).

    Article  ADS  Google Scholar 

  23. J. Lense and H. Thirring, “On the influence of the proper rotation of a central body on the motion of the planets and the Moon, according to Einstein’s theory of gravitation,” Z. Phys. 19, 156 (1918).

    Google Scholar 

  24. G. Kraniotis, “Precise relativistic orbits in Kerr and Kerr–(anti) de Sitter spacetimes,” Class. Quantum Grav. 21, 4743 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L. Iorio, “A critical analysis of a recent test of the lense–thirring effect with the LAGEOS satellites,” J. of Geodesy 80 (3), 128 (2006).

    Article  ADS  MATH  Google Scholar 

  26. L. Iorio, “A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model,” by I. Ciufolini et al.,” Euro. Phys. J. C 77 (2), 1–8 (2017).

    Article  Google Scholar 

  27. L. Iorio, “On testing frame dragging with LAGEOS and a recently announced geodetic satellite,” Universe 4 (11), 113 (2018).

    Article  ADS  Google Scholar 

  28. I. Ciufolini et al., “Reply to “A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model,” Euro. Phys. J. C 78 (11), 880 (2018).

    Article  ADS  Google Scholar 

  29. G. Renzetti, “Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment?,” Canad. J. Phys. 90 (9), 883 (2012).

    Article  ADS  Google Scholar 

  30. G. Renzetti, “Some reflections on the Lageos frame-dragging experiment in view of recent data analyses,” New Astronomy 29, 25 (2014).

    Article  ADS  Google Scholar 

  31. G. Renzetti, “On Monte Carlo simulations of the laser relativity satellite experiment,” Acta Astronautica 113, 164 (2015).

    Article  ADS  Google Scholar 

  32. L. Iorio, “General relativistic spin-orbit and spin–spin effects on the motion of rotating particles in an external gravitational field,” Gen. Rel. Grav. 44 (3), 719 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. P. Amore, A. Raya, and F. M. Fernández, “Comparison of alternative improved perturbative methods for nonlinear oscillations,” Phys. Lett. A 340 (1-4), 201 (2005).

    Article  ADS  MATH  Google Scholar 

  34. M. Demiański, Relativistic Astrophysics, Vol. 110 (Pergamon Press, New York, 1985).

    Google Scholar 

  35. D. Pugliese, Q. Hernando, and R. Ruffini, “Equatorial circular motion in Kerr spacetime,” Phys. Rev. D 84 (4), 044030 (2011).

    Article  ADS  Google Scholar 

  36. M. Heydari-Fard, S. Fakhry, and S. N. Hasani, “Perihelion advance and trajectory of charged test particles in Reissner-Nordström field via the higher-order geodesic deviations,” Adv. High Energy Phys. 2019, 1879568 (2019).

    Article  MATH  Google Scholar 

  37. D. P. Rubincam, “General relativity and satellite orbits: the motion of a test particle in the Schwarzschild metric,” Celest. Mech. Dynam. Astr. 15 (1), 21 (1977).

    Article  Google Scholar 

  38. D. E. Smith, R. Kolenkiewicz, and P. J. A. Dunn, “Techniques for the analysis of geodynamic effects using laser data,” X 592, 73-235 (1973).

  39. I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, and J. Pérez-Mercade, “Test of general relativity and measurement of the Lense–Thirring effect with two Earth satellites,” Science 279 (5359), 2100 (1998).

    Article  ADS  Google Scholar 

  40. I. Ciufolini, D. Lucchesi, F. Vespe, and A. Mandiello, “Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites,” Nuovo Cim. A 109 (5), 575 (1996).

    Article  ADS  Google Scholar 

  41. L. Iorio, I. Ciufolini, and E. C. Pavlis, “Measuring the relativistic perigee advance with satellite laser ranging,” Class. Quantum Grav. 19, 430 (2002).

    Article  MATH  Google Scholar 

  42. I. Ciufolini, A. Paolozzi, and C. Paris, “Overview of the LARES Mission: orbit, error analysis and technological aspects,” J. Phys. Conf. Series 354 (1), 012002 (2012).

    Article  Google Scholar 

  43. R. B. Langley, “The orbits of GPS satellites,” GPS world 2 (3), 60 (1991).

    Google Scholar 

  44. L. Iorio, “Dynamical orbital effects of general relativity on the satellite-to-satellite range and range-rate in the GRACE mission: A sensitivity analysis,”‘Adv. Space Res. 50, 334 (2012).

    Article  ADS  Google Scholar 

  45. R. Angélil, P. Saha, R. Bondarescu, P. Jetzer, A. Schärer, and A. Lundgren, “Spacecraft clocks and relativity: Prospects for future satellite missions,” Phys. Rev. D 89, 064067 (2014).

    Article  ADS  Google Scholar 

  46. L. Iorio, “Post-Keplerian corrections to the orbital periods of a two-body system and their measurability,” Mon. Not. Roy. Astron. Soc. 460 (3), 2445 (2016).

    Article  ADS  Google Scholar 

  47. B. Yang and W. Lin, “Post-Keplerian motion in Reissner–Nordström spacetime,” Gen. Rel. Grav. 51 (9), 1–10 (2019).

    Article  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our sincere thanks and appreciation to Prof. M. I. Wanas (Cairo University, Egypt) for his deepest interest and useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bakry.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakry, M.A., Moatimid, G.M. & Tantawy, M.M. Measuring the Perigee Advance of an Artificial Satellite under the Angular Momentum and Earth’s Electromagnetic Field Influence. Gravit. Cosmol. 28, 204–215 (2022). https://doi.org/10.1134/S0202289322020025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289322020025

Navigation