Skip to main content
Log in

Beyond the Equivalence Principle: Gravitational Magnetic Monopoles

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We review the hypothesis on the existence of gravitational magnetic monopoles (H-poles for short) defined by analogy with Dirac’s hypothesis on magnetic monopoles in electrodynamics. These hypothetic dual particles violate the equivalence principle and are accelerated by a gravitational field. We propose an expression for the gravitational force exerted upon an H-pole. According to GR, ordinary matter (which we call E-poles) follows geodesics in a background metric \(g_{\mu\nu}\). The dual H-poles follows geodesics in an effective metric \(\hat{g}_{\mu\nu}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Novello, C. A. P. Galvгo, I. Damiгo Soares, and J. M. Salim, J. Phys. A, Math. Gen. 9, 4, 547 (1976).

    Article  ADS  Google Scholar 

  2. J. M. Salim, Gravitational monopoles, Master Thesis (in Portuguese), CBPF, 1976.

  3. P. A. M. Dirac, Phys. Rev. 74 (7), 817 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Novello, I. Damiгo Soares, and J. M. Salim, Gen. Rel. Grav. 8 (2), 95 (1977).

    Article  ADS  Google Scholar 

  5. C. Lanczos, Rev. Mod. Phys. 34 (3), 379 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Bampi and G. Caviglia, Gen. Rel. Grav. 15, 375 (1983).

    Article  ADS  Google Scholar 

  7. M. Novello and A. L. Velloso, Gen. Rel. Grav. 19 (12), 1251 (1987).

    Article  ADS  Google Scholar 

  8. J. L. Lopez-Bonilla, G. Ovando, and J. J. Peca, Found. Phys. Lett. 12 (4), 401 (1999).

    Article  MathSciNet  Google Scholar 

  9. M. Novello and E. Bittencourt, Braz. J. Phys. 45, 756 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

MN would like to thank the support from Brazilian agencies FAPERJ, CNPq and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. S. Hartmann.

Appendix

Appendix

MATHEMATICAL COMPENDIUM

The Riemann curvature tensor can be decomposed into its irreducible parts by the relation

$$R_{\alpha\beta\mu\nu}=W_{\alpha\beta\mu\nu}+M_{\alpha\beta\mu\nu}-\frac{1}{6}Rg_{\alpha\beta\mu\nu},$$

where \(W_{\alpha\beta\mu\nu}\) is the Weyl conformal tensor,

$$2M_{\alpha\beta\mu\nu}=R_{\alpha\mu}g_{\beta\nu}+R_{\beta\nu}g_{\alpha\mu}-R_{\alpha\nu}g_{\beta\mu}-R_{\beta\mu}g_{\alpha\nu},$$

and \(g_{\alpha\beta\mu\nu}=g_{\alpha\mu}g_{\beta\nu}-g_{\alpha\nu}g_{\beta\mu}\). The duality operation for an arbitrary antisymmetric tensor \(F_{\mu\nu}\) is defined by

$$F^{*}_{\mu\nu}\equiv\frac{1}{2}\eta_{\mu\nu\alpha\beta}F^{\alpha\beta},$$

with

$$\eta_{\alpha\beta\mu\nu}=\sqrt{-g}\varepsilon_{\alpha\beta\mu\nu},$$

\(g\) being the determinant of \(g_{\mu\nu}\), and \(\varepsilon_{\alpha\beta\mu\nu}\) is the Levi-Civita totally antisymmetric quantity. We define the electric vector \(E^{\mu}\) and magnetic vector \(H^{\mu}\) by setting

$$E_{\alpha}=F_{\alpha\mu}v^{\mu},$$
$$H_{\alpha}=F^{\ast}_{\alpha\mu}v^{\mu}.$$

The Weyl tensor has ten independent components and can also be separated by an arbitrary observer endowed with the four velocity \(v^{\mu}\) into its electric (\(E_{\alpha\beta}\)) and magnetic (\(H_{\alpha\beta}\)) tensor parts, that is,

$$E_{\alpha\beta}=W_{\alpha\mu\beta\nu}v^{\mu}v^{\nu},$$
$$H_{\alpha\beta}=W^{\ast}_{\alpha\mu\beta\nu}v^{\mu}v^{\nu}.$$

Thus the electric and magnetic tensors are symmetric, traceless and orthogonal to the observer’s velocity:

$$E_{\mu\nu}=E_{\nu\mu},\quad E_{\mu\nu}v^{\mu}=0,\quad{\textrm{and}}\quad E_{\mu\nu}g^{\mu\nu}=0,$$
$$H_{\mu\nu}=H_{\nu\mu},\quad H_{\mu\nu}v^{\mu}=0,\quad{\textrm{and}}\quad H_{\mu\nu}g^{\mu\nu}=0.$$

The kinematic parameters

$$\text{Shear:}\quad\sigma_{\mu\nu}=\frac{1}{2}h^{\alpha}{}_{(\mu}h^{\beta}{}_{\nu)}-\frac{1}{3}\theta h_{\mu\nu};$$
$$\text{Vorticity:}\quad\omega_{\mu\nu}=\frac{1}{2}h^{\alpha}{}_{[\mu}h^{\beta}{}_{\nu]};$$
$$\text{Expansion factor:}\quad\theta=v^{\alpha}{}_{;\alpha};$$
$$\text{Projection:}\quad h_{\mu\nu}=g_{\mu\nu}-v_{\mu}v_{\nu}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novello, M., Hartmann, A.E. Beyond the Equivalence Principle: Gravitational Magnetic Monopoles. Gravit. Cosmol. 27, 221–225 (2021). https://doi.org/10.1134/S0202289321030117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289321030117

Navigation