Skip to main content
Log in

Non-Inflationary Cosmology Scenario of a Unique Galaxy with Reverse Rotating Two Discs

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The basic concepts of an alternative theory of Non-Inflationary Cosmology established by the author, in this paper are applied as astrophysical mechanisms for creation of a theoretical model in favor of a unique galaxy with reverse rotating two discs. Based mainly on the phenomenon of the galactic local explosion/implosion phenomenon with its direct applications, this primary model is more extended, aiming at the consideration of the possibility of a binary system of supermassive black holes in the core of such galaxy. This prediction is necessary for enlightening the unusual behavior of this galaxy, moreover, for the disclosure of gravitational radiation of this theoretical model, initiating creation of a unique program for the prospective observations/detection of similar galaxies. Revealed by the theory of Non-Inflationary Cosmology original state of matter in the state of Bose condensate inside a galactic supermassive black hole is able to reveal macroscopic quantum gravity phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Impellizzeri et al., “Counter-rotation and high-velocity outflow in the parsec-scale molecular torus of NGC 1068,” Astroph. J. Lett. 884, L28 (2019).

    Article  ADS  Google Scholar 

  2. A. Avetissian, “Cosmological bang within matter era. Is the generation of galactic-scale mass possible?” arXiv: 0711.2969.

  3. A. Avetissian, “Cosmological bang as a consequence of a sudden change in the quantum statistics of nuclear matter,” Astrophysics 51 (1), 130–139 (2008).

    Article  ADS  Google Scholar 

  4. A. Avetissian, “Planck’s constant variation as a cosmological evolution test for the early Universe,” Grav. Cosmol. 15, 10–12 (2009).

    Article  ADS  Google Scholar 

  5. A. Avetissian, “Might quantum symmetry breakdown cause super-massive proto-matter according to Ambartsumyan’s prediction?,” in: Evolution of Cosmic Objects Through their Physical Activity. V. Ambartsumian’s 100 \({}^{\textrm{th}}\) ann. conf. (Edit Print, Yerevan, 2010), p. 268–274.

  6. A. Avetissian, “Several aspects of the problems of cosmomicrophysics,” in: GAMOW-10 \({}^{\textrm{th}}\) Int. Conf. Astronomy and Beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radio-Astronomy and Astrobiology (OSU Press, Odessa, 2010), p. 86–91.

  7. A. Avetissian, “New cosmic scales as a cornerstone for the evolutionary processes, energetic resources and activity phenomena of the non-stable Universe,” ASP Conference Series 511, 230–237 (2017).

    Google Scholar 

  8. A. Avetissian, “On the fundamental cosmological scales in matter era,” Grav. Cosmol. 24, 375–377 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Avetissian, “Footprints of non-inflationary cosmology in programs OLIMPIA and synthesis of heavy elements,” J. Phys. Conf. Ser. 1390, 012084 (2019).

    Article  Google Scholar 

  10. A. Avetissian, “New astrophysical mechanism of disc-shaped galaxies’ rotation by the theory of non-inflationary cosmology,” Reports of NAS RA 119, 142–150 (2019).

    MathSciNet  Google Scholar 

  11. A. Avetissian, “Entangled gravitons? Prospective original scenarios in cosmology,” Grav. Cosmol. 26, 22–28 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  12. G.R. Meurer et al., “Cosmic clocks: a tight radius–velocity relationship for HI-selected galaxies,” Mon. Not. R. Astron. Soc. 476, 1624–1636 (2018).

    Article  ADS  Google Scholar 

  13. A. Avetissian, “Interaction of charged particles with the field of rotating magnetic dipole in the presence of electromagnetic radiation,” Astrophysics 16, 170–181 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Avetissian, “Magnetosphere of baryon stars. II. Inclined rotator,” Astrophysics 15, 80–92 (1979).

    Article  ADS  Google Scholar 

  15. J. Kormendy and D. Richstone, “Inward bound—the search for supermassive black holes in galactic nuclei,” Ann. Rev. Astron. Astrophys. 33, 581–624 (1995).

    Article  ADS  Google Scholar 

  16. J. Magorrian et al., “The demography of massive dark objects in galaxy centers,” Astrophys. J. 115 (6), 2285–2305 (1998).

    Google Scholar 

  17. J. Kormendy and R. Bender, “Correlations between supermassive black holes, velocity dispersions, and mass deficits in elliptical galaxies with cores,” Astrophys. J. 691 (2), L142–146 (2009).

    Article  ADS  Google Scholar 

  18. J. Hong J et al., “Binary black hole mergers from globular clusters: the impact of globular cluster properties,” Mon. Not. R. Astr. Soc. 480, 5645–5656 (2018).

    Article  ADS  Google Scholar 

  19. N. Stone and N. Leigh, “A statistical solution to the chaotic, non-hierarchical three-body problem,” Nature 576 (7787), 406–410 (2019).

    Article  ADS  Google Scholar 

  20. N. Arav et al., “HST/COS observations of quasar outflows in the 500–1050 E rest frame,” Astrophys. J. Supl. Ser. 247 (2), 37 (2020).

    Article  ADS  Google Scholar 

  21. B. Gerke et al., “The DEEP2 Galaxy Redshift Survey: AEGIS observations of a dual AGN at \(z=0.7\),” Astrophys. J. 660, L23–L26 (2007).

    Article  ADS  Google Scholar 

  22. F. Liu et al., “A milli-parsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5,” Astrophys. J. 786 (2), 103–116 (2014).

    Article  ADS  Google Scholar 

  23. K. Bansal et al., “Constraining the orbit of the supermassive black hole binary 0402+379,” Astrophys. J. 843(1), 14–22 (2017).

    Article  ADS  Google Scholar 

  24. P. Kharb et al., “A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674,” Nature Astron. 1 (10), 727–733 (2017).

    Article  ADS  Google Scholar 

  25. B. P. Abbott et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  26. B. P. Abbott et al., “The basics of physics of the binary BH merger GW 150914,” Ann. Phys. 529 (1-2), 1600209 (2017).

    Article  Google Scholar 

  27. L. Blanchet et al., “Gravitational-radiation damping of compact binary systems to second post-Newtonian order,” Phys. Rev. Lett. 74, 3515 (1995).

    Article  ADS  Google Scholar 

  28. P. Van Dokkum et al., “A galaxy lacking dark matter,” Nature 555, 629 (2018).

    Article  ADS  Google Scholar 

  29. S. Danieli et al., “Still missing dark matter: KCWI high-resolution stellar kinematics of NGC1052-DF2,” arXiv: 1901.03711.

  30. N. Matt et al., “An extremely energetic supernova from a very massive star in a dense medium,” Nature Astron. 4, 893–899 (2020).

    Article  Google Scholar 

  31. Y. Zhao et al., “Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors,” Phys. Rev. Lett. 124, 171101 (2020).

    Article  ADS  Google Scholar 

  32. L. McCuller et al., “Frequency-dependent squeezing for advanced LIGO,” Phys. Rev. Lett. 124, 171102 (2020).

    Article  ADS  Google Scholar 

  33. T. Yuan et al., “A giant galaxy in the young Universe with a massive ring,” Nature Astr. 4, 957–964 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ara K. Avetissian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avetissian, A.K. Non-Inflationary Cosmology Scenario of a Unique Galaxy with Reverse Rotating Two Discs. Gravit. Cosmol. 27, 226–239 (2021). https://doi.org/10.1134/S020228932103004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228932103004X

Navigation