Skip to main content
Log in

Hyperbolic Potential with Original Chaplygin Gas in Braneworld Inflation

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the original Chaplygin gas model in the context of Randall-Sundrum type-II braneworld with a hyperbolic potential. We consider the Chaplygin gas as a candidate for inflation by using the latest data release from Planck 2015. We found that the various inflationary spectrum parameters ns, r and \(\frac{dn_{s}}{d\;\text{ln}\;k}\) depend only on the number of e-folds. The compatibility of these parameters with the last measurement of Planck is realized with large values of N. In this context, a suitable observational central value of ns = 0.965 is obtained in the case of the original Chaplygin gas and a hyperbolic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Linde, “Inflationary cosmology after Planck” 2013, arXiv: 1402.0526.

    MATH  Google Scholar 

  2. P. Ishwaree. Neupane, Phys. Rev. D 90, 123502 (2014).

    Article  Google Scholar 

  3. H. Guth. Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  4. A. Jawad, S. Chaudhary, and N. Videla, Eur. Phys. J. C 77, 11808 (2017).

    Google Scholar 

  5. M. C. Bento, O. Bertolami, and A. Sen, Phys.Lett. B 575, 172 (2003).

    Article  ADS  Google Scholar 

  6. P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Phys. B 565, 269 (2000).

    Article  ADS  Google Scholar 

  7. R. Kallosh and A. Linde, “Dark energy and fate of the Universe,” JCAP 0302 (2003).

    Google Scholar 

  8. A. Liddle and D. Lyth, (Cambridge: Cambridge University Press, 2000).

  9. P. Brax, C. Bruck, and A. Davis, Phys. 67, 2183–2232 (2004).

    Google Scholar 

  10. A. Al Mamon and S. Das, arXiv: 1503.06280.

  11. S. Del Campo, R. Herrera, G. Olivares, and D. Pavón, Phys. Rev. D 74, 023501 (2006).

    Article  ADS  Google Scholar 

  12. M. Jamil, Int. J.Theor. Phys. 49, 62 (2010).

    Article  Google Scholar 

  13. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  14. L. McAllister and E. Silverstein, Gen. Rel. Grav. 40, 565 (2008); arXiv: 0710.2951.

    Article  ADS  Google Scholar 

  15. R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004).

    Article  ADS  Google Scholar 

  16. M. Li, Phys. Lett. B 603, 1 (2004).

    Article  ADS  Google Scholar 

  17. J. M. Cline, S. Jeon, and G. D. Moore, Phys. Rev. D 70, 043543 (2004).

    Article  ADS  Google Scholar 

  18. D. Panigrahi and S. Chatterjee, Int. J. Mod. Phys. D 21, 1250079 (2012).

    Article  ADS  Google Scholar 

  19. Chaplygin. Sci. Mem. Moscow Univ. Math. Phys. 21, 1–121 (1904).

  20. A. Y. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Phys. Lett. B 511, 265 (2001).

    Article  MATH  ADS  Google Scholar 

  21. N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. B 535, 17 (2002).

    Article  ADS  Google Scholar 

  22. R. Bean and O. Dore, Phys. Rev. D 68, 023515 (2003).

    Article  ADS  Google Scholar 

  23. M. R. Setare. Phys. Lett. B 654, 1 (2007).

    Article  ADS  Google Scholar 

  24. A. Dev, J. S. Alcaniz, and D. Jain, Phys. Rev. D 67, 023515 (2003).

    Article  ADS  Google Scholar 

  25. R. Herrera, “Chaplygin inflation on the brane,” Phys. Lett. B 664, 149 (2008).

    Article  ADS  Google Scholar 

  26. R. Herrera, Gen. Rel. Grav. 41, 1259 (2008).

    Article  ADS  Google Scholar 

  27. D. Langlois, R. Maartens, and D. Wands, Phys. Lett. B 489, 259 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Zarrouki and M. Bennai, Phys. Rev. D 82, 123506 (2010).

    Article  ADS  Google Scholar 

  29. Planck Collaboration, Astron. Astroph. 594, A13 (2015).

    Google Scholar 

  30. L. Randall and R. Sundrum. Phys. Rev. Lett. 83, 3370 1999); L. Randall and R. Sundrum. Phys. Rev. Lett. 83, 4690 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Maartens, D. Wands, B. Basset, and I. Heard. Phys. Rev. D 62, 041301 (2000).

    Article  ADS  Google Scholar 

  32. O. Bertolami and V. Duvvuri. Phys. Lett. B 640, 121 (2006).

    Article  ADS  Google Scholar 

  33. S. Basilakos and J. D. Barrow. Phys. Rev. D 91, 103517 (2015).

    Article  ADS  Google Scholar 

  34. Z. Mounzi, M. Ferricha-Alami, A. Safsafi, and M. Bennai, Grav. Cosmol. 23, 84 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safsafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khay, I., Salamate, F., Safsafi, A. et al. Hyperbolic Potential with Original Chaplygin Gas in Braneworld Inflation. Gravit. Cosmol. 25, 172–178 (2019). https://doi.org/10.1134/S0202289319020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319020099

Navigation