Skip to main content
Log in

Peculiarities of Cosmological Models Based on a Nonlinear Asymmetric Scalar Doublet with Minimal Interaction. I. Qualitative Analysis

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

A detailed comparative qualitative analysis is carried out for of the evolution of cosmological models based on a doublet of classical and phantom scalar fields with self-action. Just as in the case of a single scalar field, the phase space of such systems becomes multiply connected, there appear ranges of negative total effective energy unavailable for motion. A distinctive feature of the asymmetrical scalar doublet is the time dependence of prohibited ranges’ projections on the phase subspaces of each field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Ignat’ev and A. Agathonov, Russ. Phys. J. 61 (19) (2018) (to be publised); Yu. Ignat’ev, A. Agathonov and I. Kokh, arXiv: 1808. 04570.

    Google Scholar 

  2. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, Singapore, 2011).

    Book  MATH  Google Scholar 

  3. V. A. Belinskii, L. P. Grishchuk, Ya. B. Zel’dovich, and I. M. Khalatnikov, Sov. Phys. JETP62, 195–203 (1985).

  4. V. M. Zhuravlev, JETP 120, 1042 (2001).

    Google Scholar 

  5. L. A. Urena-Lopez and M. J. Reyes-Ibarra, arXiv: 0709. 3996.

  6. V. M. Zhuravlev, T. V. Podymova, and E. A. Pereskokov, Grav. Cosmol. 17, 101 (2011).

    Article  ADS  Google Scholar 

  7. L. A. Urena-Lopez, arXiv: 1108. 4712.

  8. Yu. G. Ignat’ev, Space, Time and Fundamental Interections, 3 (16), 16 (2016); arXiv: 1609. 00745.

    Article  Google Scholar 

  9. Yu. G. Ignat’ev, Space, Time and Fundamental Interections, 3 (16), 37 (2016).

    Article  Google Scholar 

  10. Yu. G. Ignat’ev, Grav. Cosmol. 23, 131 (2017); arXiv: 1609. 00745, arXiv: 1609. 08851.

    Article  ADS  Google Scholar 

  11. Yu. G. Ignat’ev and A. R. Samigullina, Russ. Phys. J. 60, 1173 (2017).

    Article  Google Scholar 

  12. Yu. G. Ignat’ev, D. Yu. Ignatyev, and A. R. Samigullina, Grav. Cosmol. 24, 148 (2018); arXiv: 1705. 05000.

    Article  ADS  Google Scholar 

  13. V. M. Zhuravlev, Space, Time and Fundamental Interections 4 (17), 39 (2016).

    Article  Google Scholar 

  14. F. Hoyle, Mon. Not. R. Astr. Soc. 109, 365 (1949).

    Article  ADS  Google Scholar 

  15. F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. A 282, 191 (1964).

    ADS  Google Scholar 

  16. Yu. G. Ignat’ev, Sov. Phys. J. 26, 1068 (1983).

    Article  Google Scholar 

  17. Yu. G. Ignat’ev and R. R. Kuzeev, Ukr. Phys. J. 29, 1021 (1984).

    Google Scholar 

  18. Yu. G. Ignatyev and R. F. Miftakhov, Grav. Cosmol. 12, 179 (2006).

    ADS  Google Scholar 

  19. K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 973 (2006).

    Article  Google Scholar 

  20. S. V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, Class. Quantum Grav. 29, 245006 (2012).

    Article  ADS  Google Scholar 

  21. Yu. G. Ignat’ev, Russ. Phys. J. 55, 1345 (2013).

    Article  Google Scholar 

  22. James M. Cline, Sangyong Jeon, and Guy D. Moore, Phys. Rev. D 70, 043543 (2004); arXiv: hepph/0311312.

    Article  ADS  Google Scholar 

  23. R. Kallosh, J. Kang, A. Linde, and V. Mukhanov, JCAP Physics. 2008. 10. 1088/1475-7516/2008/04/018.

    Google Scholar 

  24. S. Nojiri and E. N. Saridakis, Astroph. Space Sci 347, 221 (2013).

    Article  ADS  Google Scholar 

  25. F. Sbisa, Eur. J. Phys., 36 (1) (2014).

    Google Scholar 

  26. S. Yu. Vernov, Theor. Math. Phys. 166, 392 (2011).

    Article  Google Scholar 

  27. S. M. Carroll, M. Hoffman, and M. Trodden, astroph/0301273.

  28. M. Richarte and G. Kremer, European Phys. J. C 77 (2016).

    Google Scholar 

  29. A. Tripathi, A. Sangwana, and H. K. Jassal, JCAP 2017, 012 (2017).

    Article  Google Scholar 

  30. Y. Ma, J. Zhang, S. Cao et al., Eur. Phys. J. C 77, 891 (2017).

    Article  ADS  Google Scholar 

  31. J. Meyers et al, ApJ 750, 1 (2012).

    Article  ADS  Google Scholar 

  32. R. Terlevich et al., MNRAS 451, 3001 (2015).

    Article  ADS  Google Scholar 

  33. R. Chavez et al., MNRAS 462, 2431 (2016).

    Article  ADS  Google Scholar 

  34. Yu. G. Ignat’ev, Russ. Phys. J. 55, 166 (2012).

    Article  Google Scholar 

  35. Yu. G. Ignat’ev, Russ. Phys. J. 55, 550 (2012).

    Article  Google Scholar 

  36. Yu. G. Ignat’ev, Space, Time and Fundamental Interections 1 (6), 47 (2014).

    Google Scholar 

  37. Yu. G. Ignatyev and D. Yu. Ignatyev, Grav. Cosmol. 20, 299 (2014).

    Article  ADS  Google Scholar 

  38. Yu. G. Ignatyev, A. A. Agathonov, and D. Yu. Ignatyev, Grav. Cosmol. 20, 304 (2014).

    Article  ADS  Google Scholar 

  39. Yu. G. Ignatyev (Ignat’ev), Grav. Cosmol. 21, 296 (2015).

    Article  ADS  Google Scholar 

  40. Yu. G. Ignatyev and A. A. Agathonov, Grav. Cosmol. 21, 105 (2015).

    Article  ADS  Google Scholar 

  41. Yu. G. Ignat’ev and M. L. Mikhailov, Russ. Phys. J. 57, 1743 (2015).

    Article  Google Scholar 

  42. Yu. Ignat’ev, A. Agathonov, M. Mikhailov, and D. Ignatyev, Astr. Space Sci. 357, 61 (2015).

    Article  ADS  Google Scholar 

  43. Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections 3 (16), 48 (2016).

    Article  Google Scholar 

  44. Yu Ignat’ev, A. Agathonov, and D. Ignatyev, arXiv:1608. 05020 [gr-qc] (2016).

    Google Scholar 

  45. Yu. G. Ignat’ev, A. A. Agathonov and Dmitry Ignatyev, Grav. Cosmol. 24, 1 (2018).

    Article  ADS  Google Scholar 

  46. Yu. G. Ignat’ev, Space, Time and Fundamental Interections 1, 79 (2012).

    Google Scholar 

  47. Yu. G. Ignat’ev and M. L. Mikhailov, Space, Time and Fundamental Interections. Issue 4 (13), 75 (2015).

    Article  Google Scholar 

  48. Yu. G. Ignat’ev, Russ. Phys. J. 59, 2074 (2017).

    Article  Google Scholar 

  49. Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections 4(17), 52 (2016); arXiv: 1610. 04443.

    Google Scholar 

  50. Yu. G. Ignat’ev and A. A. Agathonov, Grav. Cosmol. 23, 230 (2017); arXiv: 1610. 04443.

    Article  ADS  Google Scholar 

  51. O. I. Bogoyavlensky, Methods of the Qualitative Theory of Dynamic Systems in Astrophysics and Gas Dynamics (Nauka, Moscow, 1980).

    Google Scholar 

  52. N. N. Bautin and E. A. Leontovich, Methods and Techniques for the Qualitative Study of Dynamical Systems in the Plane, issue 11 (Series “ReferenceMathematical Library”, Nauka, Moscow, 1989).

    Google Scholar 

  53. Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections. Issue 2, 36 (2017).

    Article  Google Scholar 

  54. Yu. Ignat’ev and I. A. Kokh. Russ. Phys. J. 60, 2074 (2018)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Ignat’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignat’ev, Y.G., Kokh, I.A. Peculiarities of Cosmological Models Based on a Nonlinear Asymmetric Scalar Doublet with Minimal Interaction. I. Qualitative Analysis. Gravit. Cosmol. 25, 24–36 (2019). https://doi.org/10.1134/S0202289319010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319010055

Navigation