Skip to main content
Log in

Motion in bimetric type theories of gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The problem of motion of different test particles, charged and spinning objects with a constant spin tensor in different versions of the bimetric theory of gravity is considered by deriving their corresponding path and path deviation equations using a modified Bazanski Lagrangian. Such a Lagrangian, as in the framework of Riemannian geometry, has a capability to obtain path and path deviations of any object simultaneously. This method enables us to derive the path and path deviation equations of different objects orbiting in very strong gravitational fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Misner, K. Thorne, and J. Wheeler, Gravitation (San Francisco, Freeman, 1973).

    Google Scholar 

  2. A. Papapetrou, Proc, Roy. Irish Acad. Section A 52, 11 (1948).

    Google Scholar 

  3. N. Rosen, Gen. Rel. Grav. 4, 435 (1973).

    Article  ADS  Google Scholar 

  4. N. Rosen, Ann. Phys. 84, 455 (1974).

    Article  ADS  Google Scholar 

  5. H. Yalmoz, Gen. Rel. Grav. 6, 269 (1975).

    Article  ADS  Google Scholar 

  6. J. W. Moffat, hep-th/0208122.

  7. J. W. Moffat, quant-ph/0204151 (2002).

  8. J. W. Moffat, arXiv: 1110.1330.

  9. J. W. Moffat, arXiv: 1306.5470.

  10. M. Milgrom, Astroph. J. 270, 365 (1983).

    Article  ADS  Google Scholar 

  11. M. Milgrom, Phys. Rev. D 80, 123536 (2009); arXiv: 0912.0790.

    Article  ADS  Google Scholar 

  12. M. Milgrom, arXiv: 1404.7661.

  13. M. Milgrom Phys. Rev. D 89, 024027 (2014); arXiv: 1308.5388.

    Article  ADS  Google Scholar 

  14. S. F. Hassan and Rachel A. Rosen, arXiv: 1109.3515.

  15. K. Aoki and K. Maeda, arXiv: 1409.0202.

  16. R. MAvakian, E. V. Churabian, and H. A. Grigiorian, Astron. Nachr. 309, 229 (1988).

    Article  ADS  Google Scholar 

  17. L. V. Verozub arXiv: 0911.5512.

  18. L. V. Verozub, Space-time, Relativity and Gravitation (Lambert Academic Publishing, 2015).

    MATH  Google Scholar 

  19. M. Israelit, Gen. Rel. Grav. 7, 623 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Falik and R. Opher, Mon. Not. R. Astr. Soc. 192, 75 (1980).

    Article  ADS  Google Scholar 

  21. S. L. Bazanski, J. Math. Phys. 30, 1018 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. I. Wanas, M. Melek, and M. E. Kahil, Astroph. Space Sci. 228, 273 (1995).

    Article  ADS  Google Scholar 

  23. M. I. Wanas, M. Melek, and M. E. Kahil, Grav. Cosmol. 4, 319 (2000).

    ADS  Google Scholar 

  24. M. I. Wanas and M. E. Kahil, Gen. Rel. Grav. 31 1921 (2000); gr-qc/9912007.

    Article  ADS  Google Scholar 

  25. M. E. Kahil, J. Math. Phys. 47, 052501 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. E. Kahil, WSEAS Transaction of Mathematics 10 (12), 454 (2011).

    Google Scholar 

  27. M. E. Kahil, Hyperion Int. J. of Econophysics and New Economy 7 (1), 62 (2014).

    Google Scholar 

  28. A. Papapetrou, Proc. R. Soc. London A 209, 248 (1951).

    Article  ADS  Google Scholar 

  29. W. G. Dixon, Proc. R. Soc. London A 314, 499 (1970).

    Article  ADS  Google Scholar 

  30. E. Corinaldesi and A. Papapetrou, Proc. R. Soc. London A 209, 259 (1951).

    Article  ADS  Google Scholar 

  31. M. Pavsic and M. E. Kahil, Central Eur. J. Phys. 10, 414 (2012); arXiv: 1012.2258.

    ADS  Google Scholar 

  32. C. Romero, J. B. Fonseca-Neto, and M. L. Pucheu, arXiv: 1201.1469.

  33. J. D. Bekenstein, gr-qc/9211017.

  34. M. E. Kahil and T. Harko, Mod. Phys. Lett. A 24, 667 (2009); arXiv: 0809.1915.

    Article  ADS  Google Scholar 

  35. D. Falik and N. Rosen, Gen. Rel. Grav. 13, 599 (1981).

    Article  ADS  Google Scholar 

  36. Y. Akrami, T. Koivisto, and A. R. Solomon, arXiv: 1404. 0006.

  37. S. Hossenfelder, arXiv: 0807. 2838.

  38. J. Foukzon, S. A. Podosenov, A. A. Potapov, and E. Menkova, arXiv: 1007. 3290.

  39. M. I. Wanas, Mod. Phys. Lett. A 24, 1749 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  40. M. I. Wanas and Mona M. Kamal, Mod. Phys. Lett. A 26, 2065 (2011); arXiv: 1103.4121.

    Article  ADS  Google Scholar 

  41. M. I. Wanas, M. E. Kahil, and Mona M. Kamal, Grav. Cosmol. 22, 345 (2016).

    Article  ADS  Google Scholar 

  42. I. T. Drummond, Phys. Rev. D 63, 043503 (2001); astro-ph/0008234.

    Article  ADS  Google Scholar 

  43. Magd E. Kahil, Odessa Astron. Publ. 28, 126 (2015).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magd E. Kahil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahil, M.E. Motion in bimetric type theories of gravity. Gravit. Cosmol. 23, 70–79 (2017). https://doi.org/10.1134/S0202289317010066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317010066

Navigation