Skip to main content
Log in

Gluon matter plasma in the compact star core within a fluid QCD model

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The structure of a compact star core filled with gluon matter plasma is investigated within the fluid-like QCD framework. The energy-momentum tensor, density and pressure relevant to gluonic plasma having the nature of a fluid bulk of gluon sea are derived within the model. It is shown that the model provides a new equation of state for the perfect fluid with only a single parameter of fluid distribution, ϕ(x). The results are applied to constructing the equation of state describing the gluonic plasma dominated compact star core. The equations of pressure and density distribution are solved analytically for a small compact star core radius. The phase transition of the plasma near the core surface is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Adler et al. (STARCollaboration), Phys.Rev.C 66, 034904 (2002).

    Article  ADS  Google Scholar 

  2. K. Adeox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005).

    Article  ADS  Google Scholar 

  3. E. Shuryak, Nucl. Phys. A 774, 387 (2006).

    Article  ADS  Google Scholar 

  4. I. Bouras et al., Phys. Rev. Lett. 103, 032301 (2009).

    Article  ADS  Google Scholar 

  5. P. Romatschke, Int. J.Mod. Phys. E 19, 1 (2010).

    Article  ADS  Google Scholar 

  6. M. G. Alford, K. Rajagopal, T. Schaefer, and A. Schmitt, Rev. Mod. Phys. 80, 1455 (2008). DOI 10.1103/RevModPhys.80.1455

    Article  ADS  Google Scholar 

  7. M. Harrison, T. Ludlam, and S. Ozaki, Nucl. Inst. Meth. Phys. Res. A 499, 235 (2003)

    Article  ADS  Google Scholar 

  8. D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).

    Article  ADS  Google Scholar 

  9. P. Huovinen et al., Phys. Lett. B 503, 58 (2001).

    Article  ADS  Google Scholar 

  10. P. F. Kolb et al., Nucl. Phys. A 696, 197 (2001).

    Article  ADS  Google Scholar 

  11. P. F. Kolb and R. Rapp, Phys. Rev. C 67, 044903 (2003).

    Article  ADS  Google Scholar 

  12. T. Hirano and K. Tsuda, Phys. Rev. C 66, 054905 (2002).

    Article  ADS  Google Scholar 

  13. R. Baier and P. Romatschke, Eur. Phys. J. C 51, 677 (2007).

    Article  ADS  Google Scholar 

  14. J. Jowett, LHC Lead Ion Beam Commissioning in LHC Design Report, Tech. rep., CERN (2009).

  15. J. Adams et al., (STAR Collaboration), Phys. Rev. Lett. 91, 172302 (2003).

    Article  ADS  Google Scholar 

  16. A. Adare et al., (PHENIX Collaboration), Phys. Rev. Lett. 101, 232301 (2008).

    Article  ADS  Google Scholar 

  17. S. Gottlieb, J. Phys. Conf. Ser. 78, 012023 (2007).

    Article  ADS  Google Scholar 

  18. P. Petreczky, Europ. Phys. J. Special Topics 155, 1951 (2008).

    Google Scholar 

  19. S. S. Adler et al. (PHENIXCollaboration), Phys.Rev. Lett 91, 182301 (2003).

    Article  ADS  Google Scholar 

  20. J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 052302 (2004).

    Article  ADS  Google Scholar 

  21. B. B. Back et al. (Phobos Collaboration), Phys. Rev. C 72, 051901 (2005).

    Article  ADS  Google Scholar 

  22. W. A. Zajc, Nucl. Phys. A 805, 283 (2008).

    Article  ADS  Google Scholar 

  23. U. Heinz, Phys. Rev. Lett. 51, 351 (1983).

    Article  ADS  Google Scholar 

  24. D. D. Holm and B. A. Kupershmidt, Phys. Rev. D 30, 2557 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Choquet-Bruhat, J.Math. Phys. 33, 1782 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J. P. Blaizot and E. Iancu, Nucl. Phys. B 421, 565 (1994).

    Article  ADS  Google Scholar 

  27. B. Bistrovic et al., Phys. Rev. D 67, 025013 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  28. S. M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003).

    Article  ADS  Google Scholar 

  29. C. Manuel and S. Mrowczynski, Phys. Rev. D 74, 105003 (2006).

    Article  ADS  Google Scholar 

  30. B. A. Bambah, S. M. Mahajan, and C. Mukku, Phys. Rev. Lett. 97, 072301 (2006)

    Article  ADS  Google Scholar 

  31. Marmanis, Phys. of Fluid 10, 1428 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. A. Sulaiman, A. Fajarudin, T.P. Djun, and L.T. Handoko, Int. J. Mod. Phys.A24, 3630 (2009).

    Article  ADS  MATH  Google Scholar 

  33. T. P. Djun and L. T. Handoko, in: Proceeding of the Conference in Honour of Murray Gell-Mann’s 80th Birthday: Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity (2011), pp. 419–425. DOI 10.1142/97898143356140040.

  34. R. C. Tolman, Proc. Nat. Acad. Sci. 20, 169 (1934).

    Article  ADS  Google Scholar 

  35. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugroho, C.S., Latief, A.O., Djun, T.P. et al. Gluon matter plasma in the compact star core within a fluid QCD model. Gravit. Cosmol. 18, 32–38 (2012). https://doi.org/10.1134/S020228931201015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931201015X

Keywords

Navigation