Skip to main content
Log in

Quintessential phenomena in higher-dimensional space-time

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Higher-dimensional cosmology provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Here we discuss two situations: in the first case we start with an ordinary matter field without any equation of state and end up with a generalized Chaplygin type of gas apparently as a consequence of extra dimensions. In the second case we introduce a priori a Chaplygin type of gas to study quintessential phenomena in higher-dimensional spacetime. The first case suffers from the disqualification that no dimensional reduction occurs, which is, however, rectified in the second case. Both models show the sought-after feature of occurrence of a flip in the expansion rate. It is observed that with the increase of dimensions the occurrence of a flip is delayed in both models, more in line with current observational requirements. Interestingly, we see that, depending on some initial conditions, our model admits QCDM, ΛCDM and also phantom-like evolution within a unified framework. Our solutions are general in nature in the sense that when the extra dimensions are switched off, the known 4D model is recovered. A correspondence to a recent work of Guo et al. on a quiessence-likemodel is also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Csaba, N. Kaloper, and J. Terning, Phys. Rev. Lett. 88, 161302 (2002).

    Article  ADS  Google Scholar 

  2. Ujjaini Alam, Varun Sahni, and A. A. Starobinsky, JCAP 0406, 008 (2004).

    ADS  Google Scholar 

  3. H. Alnes, M. Amarzguioui, and Ø. Grøn, JCAP 01, 007 (2007).

    ADS  Google Scholar 

  4. T. Padmanabhan, Understanding Our Universe: Current Status and Open Issues and references therein, gr-qc/0503107.

  5. A. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001).

    Article  ADS  MATH  Google Scholar 

  6. D. Panigrahi, S. Chatterjee, and Y. Z. Zhang, Int. J. Mod. Phys. A 21, 6491 (2006).

    Article  ADS  MATH  Google Scholar 

  7. D. Panigrahi and S. Chatterjee, Gen. Rel. Grav. 40, 833 (2008); S. Chatterjee and D. Panigrahi, AIP Conf. Proc. 1115, 335 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Einstein, The Meaning of Relativity (Princeton Univ. Press, Princeton, 1956); J. A. Wheeler, Einstein’s Vision (Springer, Berlin, 1968).

    Google Scholar 

  9. P. S. Wesson, Space-Time-Matter (World Sci., Singapore, 1999).

    Book  MATH  Google Scholar 

  10. K. A. Milton, Grav. Cosmol. 9, 66 (2003); hepph/0210170.

    ADS  MATH  Google Scholar 

  11. K. A. Bronnikov, S. A. Kononogov, V. Melnikov, and S. G. Rubin, Grav. Cosmol. 14, 230 (2008); M. Eingorn and A. Zhuk, Class. Quantum Grav. 27, 055002 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. K. Mak and T. Harko, Phys. Rev. D 71, 104022 (2005); gr-qc/0505034.

    Article  ADS  Google Scholar 

  13. R. Herrera, Phys. Lett. B 664, 149 (2008); arxiv: 0805.1005.

    Article  ADS  Google Scholar 

  14. Zong-Kuan Guo and Yuan-Zhong Zhang, Phys. Lett. B 645, 326 (2007).

    Article  ADS  Google Scholar 

  15. S. Randjber-Daemi, A. Salam, and J. Strathdee, Phys. Lett. B 135, 388 (1984).

    Article  ADS  Google Scholar 

  16. S. Chatterjee and B. Bhui, Mon. Not. R. Astron. Soc. 247, 577 (1990).

    MathSciNet  Google Scholar 

  17. J. Ponce de Leon, Gen. Rel. Grav. 38, 61 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. D. Barrow, Nucl. Phys. B 310, 743 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. B. Batista, J. C. Fabris, and M. Morita, Gen. Rel. Grav. 42, 839 (2010).

    Article  ADS  MATH  Google Scholar 

  20. Y. Wu, S. Li, J. Lu, and X. Yang, Mod. Phys. Lett. A 22, 783 (2007).

    Article  ADS  Google Scholar 

  21. S. Costa, M. Ujevic, and A. F. dos Santos, Gen. Rel. Grav. 40, 1683 (2008).

    Article  ADS  MATH  Google Scholar 

  22. J. C. Fabris, H. E. S. Velten, C. Ogouyandjou, and J. Tossa, arXiv: 1007.1011.

  23. U. Debnath, A. Banerjee, and S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. C. Romero, R. Tavakol, and R. Zalaletdinov, Gen. Rel. Grav. 28, 365 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S. Hannestad and E. Mortsell, Phys. Rev. D 66, 063508 (2002); Z. K. Guo, N. Ohta, and Y. Z. Zhang, Phys. Rev. D 72, 023504 (2005).

    Article  ADS  Google Scholar 

  26. Zong-Kuan Guo and Yuan-Zhong Zhang, astroph/0509790.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panigrahi, D., Chatterjee, S. Quintessential phenomena in higher-dimensional space-time. Gravit. Cosmol. 17, 18–26 (2011). https://doi.org/10.1134/S0202289311010166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289311010166

Keywords

Navigation