Skip to main content
Log in

Numerical Simulation of Turbulent Mixing in a Shallow Lake for Periods of Under-Ice Convection

  • STUDIES OF THE PROCESSES OF INTERACTION BETWEEN LAND AND THE ATMOSPHERE AND THE HYDROLOGICAL EFFECTS OF CLIMATE CHANGE
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The article presents the results of application of Implicit Large Eddy Simulation method to numerical simulation of under-ice radiatively driven convection, developing in ice-covered water bodies in the moderate zone at the end of freeze-up period. Studies of the radiatively driven convection are of importance because of the role it plays in the temperature regime of lakes and the functioning of lake ecosystems at the end of freeze-up period. The simulation was carried out with the use of the finite-volume software code SINF/Flag-S, developed in SPbPU. The SIMPLEC algorithm with second-order accuracy was used for ad­vancing in time. The discretization of the convective terms was made with the use of QUICK scheme. The results of calculations were used to study variations in the temperature and pulsation velocity components with periodically varying intensity of external energy pumping during the daily cycle. The dissipation of the kinetic energy, background potential energy, and buoyancy flux were evaluated, and changes in these variables during a daily cycle of radiation impact were calculated. The efficiency mixing of water column was evaluated for the period of development of radiatively driven convection in a model domain simulating a small lake covered by ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Mortikov, E.V., Glazunov, A.V., Debol’skii, A.V., Lykosov, V.N., and Zilitinkevich, S.S., Modeling of the dissipation rate of turbulent kinetic energy, Dokl. Earth Sci., 2019, vol. 489, no. 2, pp. 1440–1443.

    Article  Google Scholar 

  2. Bai, Q., Li, R., Li, Z., Leppäranta, M., Arvola, L., and Li, M., Time-series analyses of water temperature and dissolved oxygen concentration in Lake Valkea-Kotinen (Finland) during ice season, Ecol. Inform., 2016, vol. 36, pp. 181–189.

    Article  Google Scholar 

  3. Bengtsson, L., Malm, J., Terzhevik, A., Petrov, M., Boyarinov, P., Glinsky, A., and Palshin, N., Field investigation of winter thermo- and hydrodynamics in a small Karelian lake, Limnol. Oceanogr., 1996, vol. 41, pp. 1502–1513.

    Article  Google Scholar 

  4. Bogdanov, S., Zdorovennova, G., Volkov, S., Zdorovennov, R., Palshin, N., Efremova, T., Terzhevik, A., and Bouffard, D., Structure and dynamics of convective mixing in Lake Onego under ice-covered conditions, Inland Waters, 2019, vol., 9, pp. 177–192.

    Article  Google Scholar 

  5. Bouffard, D., Zdorovennov, R., Zdorovennova, G., Pasche, N., Wüest, A., and Terzhevik, A., Ice-covered Lake Onega: Effects of radiation on convection and internal waves, Hydrobiologia, 2016, vol. 780, pp. 21–36.

    Article  Google Scholar 

  6. Bouffard, D., Zdorovennova, G., Bogdanov, S., Efremova, T., Lavanchy, S., Palshin, N., Terzhevik, A., Råman Vinnå, L., Volkov, S., Wüest, A., Zdoroven-nov, R., and Ulloa, H.N., Under-ice convection dynamics in a boreal lake, Inland Waters, 2019, vol. 9, pp. 142–161.

    Article  Google Scholar 

  7. Bouffard, D. and Wüest, A., Convection in lakes, Annu. Rev. Fluid Mech., 2019, vol. 51, pp. 189–215.

    Article  Google Scholar 

  8. Davies Wykes, M.S., Hughes, G.O., and Dalziel, S.B., On the meaning of mixing efficiency for buoyancy-driven mixing in stratified turbulent flows, J. Fluid Mech., 2015, vol. 781, pp. 261–275.

    Article  Google Scholar 

  9. Farmer, D.M., Penetrative convection in the absence of mean shear, Q. J. R. Meteorol. Soc., 1975, vol. 101, pp. 869–891.

    Article  Google Scholar 

  10. Gregg, M.C., D’Asaro, E.A., Riley, J.J., and Kunze, E., Mixing efficiency in the ocean, Annual Rev. Marine Sci., 2018, vol. 10, pp. 443–473.

    Article  Google Scholar 

  11. Hughes, G.O., Gayen, B., and Griffiths, R.W., Available potential energy in Rayleigh–Bénard convection, J. Fluid Mech., 2013, vol. 729, pp. R3.

    Article  Google Scholar 

  12. Jabbari, A., Rouhi, A., and Boegman, L., Evaluation of the structure function method to compute turbulent dissipation within boundary layers using numerical simulations, JGR Oceans, 2016, vol. 121, pp. 5888–5897.

    Article  Google Scholar 

  13. Jonas, T., Terzhevik, A.Y., Mironov, D., and Wüest A., Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique, J. Geophys. Res., 2003, vol. 108, pp. 3183.

    Article  Google Scholar 

  14. Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P., Zdorovennova, G., and Zdorovennov, R., Physics of seasonally ice-covered lakes: A review, Aquat. Sci., 2012, vol. 74, pp. 659–682.

    Article  Google Scholar 

  15. Kirillin, G., Aslamov, I., Leppäranta, M., and Lindgren, E., Turbulent mixing and heat fluxes under lake ice: The role of seiche oscillations, Hydrol. Earth Syst. Sci., 2018, vol. 22, pp. 6493–6504.

    Article  Google Scholar 

  16. Kirillin, G., Aslamov, I., Kozlov, V., Zdorovennov, R., and Granin, N., Turbulence in the stratified boundary layer under ice: Observations from Lake Baikal and a new similarity model, Hydrol. Earth Syst. Sci., 2020, vol. 24, pp. 1691–1708.

    Article  Google Scholar 

  17. Kirillin, G. and Terzhevik, A., Thermal instability in freshwater lakes under ice: Effect of salt gradients or solar radiation?, Cold Reg. Sci. Technol., 2011, vol. 65, pp. 184–190.

    Article  Google Scholar 

  18. Kelley, D., Convection in ice-covered lakes: Effects on algal suspension, J. Plankton Res., 1997, vol. 19, pp. 1859–1880.

    Article  Google Scholar 

  19. Mironov, D.V., Danilov, S.D., and Olbers, D.J., Large-eddy simulation of radiatively-driven convection in ice covered lakes, Proc. Sixth Workshop Phys. Processes Natural Waters, Casamitjana, X., Ed., Girona, Spain: Univ. Girona, 2001. pp. 71–75.

  20. Mironov, D., Terzhevik, A., Kirillin, G., Jonas, T., Malm, J., and Farmer, D., Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model, J. Geophys. Res., 2002, vol. 107. pp. 7-1–7-16.

  21. Palshin, N., Zdorovennova, G., Zdorovennov, R., Efremova, T., Gavrilenko, G., and Terzhevik, A., Effect of under-ice light intensity and convective mixing on chlorophyll a distribution in a small mesotrophic lake, Water Resour., 2019, vol. 46, pp. 384–394.

    Article  Google Scholar 

  22. Peltier, W.R. and Caulfield, C.P. Mixing efficiency in stratified shear flows, Annu. Rev. Fluid Mech., 2003, vol. 35, pp. 135–167.

    Article  Google Scholar 

  23. Salehipour, H. and Peltier, W.R., Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence, J. Fluid Mech., 2015, vol. 775, pp. 464–500.

    Article  Google Scholar 

  24. Salmi, P. and Salonen, K., Regular build-up of the spring phytoplankton maximum before ice-break in a boreal lake, Limnol. Oceanogr., 2016, vol. 61, pp. 240–253.

    Article  Google Scholar 

  25. Salonen, K., Pulkkanen, M., Salmi, P., and Griffiths, R., Interannual variability of circulation under spring ice in a boreal lake, Limnol. Oceanogr., 2014, vol. 59, pp. 2121–2132.

    Article  Google Scholar 

  26. Smirnov, S., Smirnovsky, A., and Bogdanov, S., The emergence and identification of large-scale coherent structures in free convective flows of the Rayleigh-Bénard Type, Fluids, 2021, vol. 6, pp. 431.

    Article  Google Scholar 

  27. Smirnov, S., Smirnovsky, A., Zdorovennova, G., Zdorovennov, R., Palshin, N., Novikova, I., Terzhevik, A., and Bogdanov, S., Water temperature evolution driven by solar radiation in an ice-covered lake: a numerical study and observational data, Water, 2022, vol. 14, pp. 4078.

    Article  Google Scholar 

  28. Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T., LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geosci. Model Development, 2016, vol. 9, pp. 1977–2006.

    Article  Google Scholar 

  29. Ulloa, H.N., Wüest, A., and Bouffard, D., Mechanical energy budget and mixing efficiency for a radiatively heated ice-covered waterbody, J. Fluid Mech., 2018, vol. 852, pp. R1.

    Article  Google Scholar 

  30. Volkov, S., Bogdanov, S., Zdorovennov, R., Zdorovennova, G., Terzhevik, A., Palshin, N., Bouffard, D., and Kirillin, G., Fine scale structure of convective mixed layer in ice-covered lake, Environ. Fluid Mech., 2019, vol. 19, pp. 751–764.

    Article  Google Scholar 

  31. Winters, K.B., Lombard, P.N., Riley, J.J., and D’Asaro, E.A., Available potential energy and mixing in density-stratified fluids, J. Fluid Mech., 1995, vol. 289, pp. 115–228.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project 21-17-00262 “Mixing in a Boreal Lake: Mechanisms and Its Efficiency.” The computational data were obtained using the resources of the Supercomputer Center at Peter the Great St.Petersburg Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnovsky, A.A., Smirnov, S.I., Bogdanov, S.R. et al. Numerical Simulation of Turbulent Mixing in a Shallow Lake for Periods of Under-Ice Convection. Water Resour 50, 768–778 (2023). https://doi.org/10.1134/S0097807823700070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823700070

Keywords:

Navigation