Skip to main content
Log in

Chemical Indication of the Processes of Freshet Runoff Formation in a Small Experimental Catchment in the Prilenskoe Plato, The Republic of Sakha (Yakutia)

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The article considers the theory, methods, and some results of four-year field studies of the processes of runoff formation on a small freezing experimental river catchment in a continuous thick (400 m) permafrost zone (the Republic of Sakha (Yakutia)) based on data on natural water chemistry. The analyzed problems include the seasonal and daily dynamics of river flow in the warm season, the concentrations of some dissolved substances in different types of water, as well as the role of channel widenings, supra-permafrost water, and aufeises in flow formation. Various types of relationships between water discharges and the concentrations of some dissolved substances are described under varying hydrothermal conditions. The role of nonfreezing lake-like channel widenings (bochags) in the regulation of freshet flow of water and dissolved matter is evaluated. The efficiency of the automated digital registration of the level, temperature, and specific electric conductance of water with a high time resolution at hydrological gages is discussed, especially, as applied to the rapid processes in a river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Anisimova, N.P. and Pavlova, N.A., Gidrogeokhimicheskie issledovaniya kriolitozony Tsentral’noi Yakutii (Hydrogeochemical Studies of the Permafrost Zone in Central Yakutia), Novosibirsk: Geo, 2014. 189 s.

  2. Boitsov, A.V., The formation conditions and the regime of slope taliks in the Central Yakutia, Kriogidrogeologicheskie issledovaniya (Cryohydrogeological Studies), Yakutsk: Inst. Merzlotovedeniya SO AN SSSR, 1985, pp. 44–55.

    Google Scholar 

  3. Varlamov, S.P., Skachkov, Yu.B., and Skryabin, P.N., The results of 35-year monitoring studies of cryolithozone at Chabyda Station (Central Yakutia), Nauka Obraz., 2017, no. 2, pp. 34–40.

  4. Gusev, E.M., Nasonova, O.N., and Dzhogan, L.Ya., Scenario prediction of changes in water balance components in the Lena Basin in the context of possible climate changes, Water Resour., 2016, vol. 43, no. 5, pp. 754–765.

    Article  Google Scholar 

  5. Ivanov, A.V., Kriogennaya metamorfizatsiya sostava prirodnykh l’dov, zamerzayushchikh i talykh vod (Cryogenic Metamorphization of the Composition of Natural Ice, Freezing, and Thawed Waters), Khabarovsk: Dal’nauka, 1998.

  6. Kurakov, S.A., A system for autonomous monitoring of the environmental conditions, Datchiki Sist., 2012, vol. 4, no. 155, pp. 29–32.

    Google Scholar 

  7. Lebedeva, L.S., Bazhin, K.I., Khristoforov, I.I., Abramov, A.A., Pavlova, N.A., Efremov, V.S., Ogonerov, V.V., Tarbeeva, A.M., Fedorov, M.P., Nesterova, N.V., and Makar’eva, O.M., Supra-permafrost subaerial taliks in the Shestakovka R. basin (Central Yakutia), Kriosfera Zemli, 2019, vol. 23, no. 1, pp. 40–50.

    Google Scholar 

  8. Perel’man, A.N. and Kasimov, N.S., Geokhimiya landshafta (Landscape Geochemistry), Moscow: Astreya, 2000.

  9. Slavinskaya, G.V. and Selemenev, V.F., Ful’vokisloty prirodnykh vod (Fulvic Acids in Natural Waters), Voronezh: Voronezhskii Univ., 2001.

  10. Tarbeeva, A.M., Lebedeva, L.S., Efremov, V.S., Krylenko, I.V., Surkov, V.V., Shamov, V.V., and Lutsenko, T.N., The conditions and processes of formation of the beaded channel of a small river in cryolithozone: case study of the Shestakovka R., Central Yakutia, Kriosfera Zemli, 2019, vol. 23, no. 2, pp. 38–49.

    Google Scholar 

  11. Filippov, V.E. and Vasil’ev, I.S., Periglacial relief of the Lena–Vilyui interfluve, Geogr. Prir. Resur., 2006, no. 4, pp. 82–86.

  12. Shepelev, V.V., Nadmerzlotnye vody kriolitozony (Supra-Permafrost Water of Cryolithozone), Novosibirsk: GEO, 2011.

  13. Bieroza, M. and Heathwaite, A., Seasonal variations in phosphorus concentration–discharge hysteresis inferred from high-frequency in situ monitoring, J. Hydrol., 2015, vol. 524, pp. 333–347.

    Article  Google Scholar 

  14. Bring, A., Shiklomanov, A., and Lammers, R.B., Pan-arctic river discharge: prioritizing monitoring of future climate change hot spots, Earth’s Future, 2017, vol. 5, pp. 72–92.

    Article  Google Scholar 

  15. Brown, K.A., Williams, W.J., Carmack, E.C., Fiske, G., Francois, R., McLennan, D., and Peucker-Ehrenbrink, B., Geochemistry of small Canadian Arctic rivers with diverse geological and hydrological settings, J. Geophys. Res.: Cryogeosci., 2020, vol. 125. e2019JG005414. https://doi.org/10.1029/2019JG005414

  16. Cartwright, I., Morgenstern, U., and Hofmann, H., Concentration versus streamflow trends of major ions and tritium in headwater streams as indicators of changing water stores, Hydrol. Process., 2020, vol. 34, pp. 485–505. https://doi.org/10.1002/hyp.13600

    Article  Google Scholar 

  17. Clow, D.W. and Drever, J., Weathering rates as a function of flow through an alpine soil, Chem. Geol., 1996, vol. 132, pp. 131–141. https://doi.org/10.1016/S0009-2541(96)00048-4

    Article  Google Scholar 

  18. Creed, I.F., McKnight, D.M., Pellerin, B.A., Green, M.B., Bergamaschi, B.A., Aiken, G.R., Burns, D.A., Findlay, S.E.G., Shanley, J.B., Striegl, R.G., Aulenbach, B.T., Clow, D.W., Laudon, H., McGlynn, B.L., McGuire, K.J., Smith, R.A., and Stackpoole, S.M., The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum, Can. J. Fish. Aquat. Sci., 2015, vol. 72, pp. 1272–1285. https://doi.org/10.1139/cjfas-2014-0400

    Article  Google Scholar 

  19. Fabre, C., Sauvage, S., Noel, G.E., Teisserenc, R., Probst, J.L., Perez, J.M.S., and Tananaev, N., Assessment of sediment and organic carbon exports into the Arctic Ocean: the case of the Yenisei river basin, Water Res., 2019, vol. 158, pp. 118–135.

    Article  Google Scholar 

  20. Georgiadi, A.G., Kashutina, E.A., and Milyukova, I.P., Long-term changes of water flow, water temperature and heat flux of the largest Siberian rivers, Polarforschung, 2017, vol. 87, no. 2, pp. 167–176.

    Google Scholar 

  21. Godsey, S.E., Kirchner, J.W., and Clow, D.W., Concentration–discharge relationships reflect chemostatic characteristics of US catchments, Hydrol. Process., 2009, vol. 23, pp. 1844–1864. https://doi.org/10.1002/hyp.7315

    Article  Google Scholar 

  22. Gonzalez-Nicolas, A., Schwientek, M., Sinsbeck, M., and Nowak, W., Characterization of export regimes in concentration–discharge plots via an advanced time-series model and event-based sampling strategies, Water, 2021, vol. 13, no. 13, p. 1723. https://doi.org/10.3390/w13131723

    Article  Google Scholar 

  23. Grimaldi, C., Grimaldi, M., Millet, A., Bariac, T., and Boulegue, J., Behaviour of chemical solutes during a storm in a rainforested headwater catchment, Hydrol. Process, 2004, vol. 18, pp. 93–106. https://doi.org/10.1002/hyp.1314

    Article  Google Scholar 

  24. Hirst, C., Andersson, P.S., Kooijman, E., Schmitt, M., Kutscher, L., Maximov, T., and Morth, C.-M., D. Porcelli, Iron isotopes reveal the sources of Fe-bearing particles and colloids in the Lena River basin, Geochim. Cosmochim. Acta, 2020, vol. 269, pp. 678–692.

    Article  Google Scholar 

  25. Keller, K., Blum, J.D., and Kling, G.W., Stream geochemistry as an indicator of increasing permafrost thaw depth in Antarctic watershed, Chem. Geol., 2010, vol. 273, pp. 76–81.

    Article  Google Scholar 

  26. Knapp, J.L.A., von Freyberg, J., Studer, B., Kiewiet, L., and Kirchner, J.W., Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics, Hydrol. Earth Syst. Sci., 2020, vol. 24, pp. 2561–2576. https://doi.org/10.5194/hess-24-2561-2020

    Article  Google Scholar 

  27. Lloyd, C., Freer, J., Johnes, P., Coxon, G., and Collins, A., Discharge and nutrient uncertainty: implications for nutrient flux estimation in small streams, Hydrol. Process., 2016, vol. 30, pp. 135–152. https://doi.org/10.1002/hyp.10574

    Article  Google Scholar 

  28. Rice, J.A. and MacCarthy, P., Statistical evaluation of the elemental composition of humic substances, Org. Geochem., 1991, vol. 17, no. 5, pp. 635–648.

    Article  Google Scholar 

  29. Rode, M., Wade, A.J., Cohen, M.J., Hensley, R.T., Bowes, M.J., Kirchner, J.W., Arhonditsis, G.B., Jordan, P., Kronvang, B., Halliday, S.J., Skeffington, R.A., Rozemeijer, J.C., Aubert, A.H., Rinke, K., and Jomaa, S., Sensors in the stream: the high-frequency wave of the present, Environ. Sci. Technol., 2016, vol. 50, pp. 10 297−10 307. https://doi.org/10.1021/acs.est.6b02155

    Article  Google Scholar 

  30. Shogren, A.J., Zarnetske, J.P., Abbott, B.W., Ianucci, F., Frei, R.J., Griffin, N.A., and Bowden, W.B., Revealing biogeochemical signatures of Arctic landscapes with river chemistry, Nature. Sci. Rep., 2019, vol. 9, p. 12 894. https://doi.org/10.1038/s41598-019-49296-6

    Article  Google Scholar 

  31. Stuefer, S.L., Arp, C.D., Kane, D.L., and Liljedahl, A.K., Recent extreme runoff observations from coastal arctic watersheds in Alaska, Water Res. Res., 2017, vol. 53, pp. 9145–9163. https://doi.org/10.1002/2017WR020567

    Article  Google Scholar 

  32. Tsyplenkov, A., Vanmaercke, M., Golosov, V., and Chalov, S., Suspended sediment budget and intra-event sediment dynamics of a small glaciated mountainous catchment in the Northern Caucasus, J. Soils Sedim., 2020, https://doi.org/10.1007/s11368-020-02633-z

  33. Wild, B., Andersson, A., Broder, L., Vonk, J., Hugelius, G., McClelland, J.W., Song, W., Raymond, P.A., and Gustafsson, O., Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost, Proc. Natl. Acad. Sci. USA, 2019, vol. 116, no. 21, pp. 10280–10285.

    Article  Google Scholar 

  34. Zhi, W., Li, L., Dong, W., Brown, W., Kaye, J., Steefel, C., and Williams, K.H., Distinct source water chemistry shapes contrasting concentration–discharge patterns, Water Resour. Res., 2019, vol. 55, pp. 4233–4251. https://doi.org/10.1029/2018WR024257

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to B.I. Gartsman (WPI RAS), V.V. Ogonerov, N.E. Baishev, N.V. Torgovkin, L.Yu. Boitsova, O.V. Shepeleva, N.I. Tananaev, and A.B. Kolesnikov (MPI SB RAS) for participation in the collection and processing of observation data.

Funding

The study was carried out as part of the work on the topic of state assignment No. 0272-2019-0027 (PGI FEB RAS), under the basic project of Research, Development and Technological Work No. 122012400106-7 (MPI SB RAS) and the basic project No. 121051100166-4 (Lomonosov MSU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shamov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamov, V.V., Lutsenko, T.N., Lebedeva, L.S. et al. Chemical Indication of the Processes of Freshet Runoff Formation in a Small Experimental Catchment in the Prilenskoe Plato, The Republic of Sakha (Yakutia). Water Resour 50, 379–391 (2023). https://doi.org/10.1134/S0097807823030120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823030120

Keywords:

Navigation