Skip to main content
Log in

Identification of Nutrients Critical Source Areas with SWAT Model under Limited Data Condition

  • WATER QUALITY AND PROTECTION: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The lack of long term observed data is the main challenge in many simulation-based studies for identification of nutrient critical source areas (CSAs). This study explored the effect of calibration of the Soil and Water Assessment Tool (SWAT) on identification of nutrient CSAs and evaluated capability of this model for finding CSAs under the limited data condition. For this purpose, the Zrebar Lake watershed in Iran was used to assess the variations in total phosphorus and total nitrogen CSAs identified by both calibrated and uncalibrated SWAT models. In this study, a modified version of SWAT model was used for calibration the model considering observed lake water quality data and also for simulation of lake water quality and quantity interactions with the watershed management practices. The nutrient CSAs identified by calibrated and uncalibrated models showed that the irrigated farmlands were the main sources of nutrients discharged into the lake in which alfalfa, apple and tobacco were marked as the most polluting cultivations. It was also concluded that CSAs were not considerably different based on the calibrated and uncalibrated models. This validates the capabilities of SWAT on marking CSAs for areas with lack of long term observed data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abbaspour, K.C., Swat-Cup2: SWAT Calibration and Uncertainty Programs Manual Version 2, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Duebendorf, Switzerland: Swiss Federal Inst. Aquatic Sci. Technol., 2011.

    Google Scholar 

  2. Abbaspour, K.C., Johnson, C.A., and Van Genuchten, M.Th., Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure, J. Vadouse Zone, 2004, vol. 3, no. 4, pp. 1340–1352.

    Article  Google Scholar 

  3. Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R., Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 2007, vol. 333, nos. 2–4, pp. 413–430.

    Article  Google Scholar 

  4. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R., Large-area hydrologic modeling and assessment: Part I, Model development, J. Am. Water Resour. Association (JAWRA), 1998, vol. 34, no. 1, pp. 73–89.

    Article  Google Scholar 

  5. Arnold J.G. and Fohrer N., SWAT 2000: current capabilities and research opportunities in applied watershed modelling, Hydrol. Processes, 2005, vol. 19, no. 3, pp. 563–572.

    Article  Google Scholar 

  6. Axinte, O., Badescu, I.S., Stroe, C., Neacsu, V., Bulgariu, L., and Bulgariu, D., Evolution of trophic parameters from Amara Lake, Environ. Eng. Manage. J., 2015, vol. 14, no. 3, pp. 559–565.

    Article  Google Scholar 

  7. Bashiri, S., Akbarzadeh, A., Zarrabi, M., Yetilmezsoy, K., Fingas, M., and Moosakhaani, M., Using PCA combined SVM in the classification of eutrophication in Dez reservoir (Iran), Environ. Eng. Manage. J., 2016, in press.

  8. Bracmort, K.S., Arabi, M., Frankenberger, J.R., Engel, B.A., and Arnold, J.G., Modeling long-term water quality impact of structural BMPs, Trans. ASABE, 2006, vol. 49, no. 2, pp. 367–474.

    Article  Google Scholar 

  9. Chen, Y., Shuai, J., Zhang, Z., Shi, P., and Tao, F., Simulating the impact of watershed management of surface water quality protection: A case study on reducing inorganic nitrogen load at a watershed scale, Ecol. Engineering, 2014, vol. 62, pp. 61–70.

    Article  Google Scholar 

  10. Comin, F.A., Sorando, R., Darwiche-Criado, N., Garcia, M., and Masip, A., A protocol to prioritize wetland restoration and creation for water quality improvement in agricultural watersheds, Ecol. Eng., 2014, vol. 66, pp. 10–18.

    Article  Google Scholar 

  11. Epelde, A.M., Cerro, I., Sanchez-Perez, J.M., Sauvage, S., Srinisvaran, R., and Antiguedad, I., Application of the SWAT model to assess the impact changes in agricultural management practices on water quality, Hydrol. Sci. J., 2015, vol. 60, no. 5, pp. 825–843.

    Google Scholar 

  12. Fan, M. and Shibata, H., Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan, Ecol. Indic., 2015, vol. 50, pp. 79–89.

    Article  Google Scholar 

  13. Geza, M. and McCray, J.E., Effects of soil data resolution on SWAT model stream flow and water quality predictions, J. Environ. Manage., 2008, vol. 88, no. 3, pp. 393–406.

    Article  Google Scholar 

  14. Ghebremichael, L.T., Veith, T.L., and Watzin, M.C., Determination of critical source areas for phosphorus loss: Lake Champlain basin, Vermont, Trans ASABE, 2010, vol. 53, no. 5, pp. 1595–1604.

    Article  Google Scholar 

  15. Gong, Q., Wang, Y.P., and Dong, L.M., Multi-objective optimization of agricultural industrial structure based on water pollution control in Erhai basin in Yunnan province, Res. Agric. Moderniz., 2010, vol. 31, pp. 475–478.

    Google Scholar 

  16. Green, W.H. and Ampt, G.A., Studies on soil physics, 1. The flow of air and water through soils, J. Agric. Sci., 1911, vol. 4, no. 1, pp. 1–24.

    Article  Google Scholar 

  17. Hernandez, E.A. and Uddameri, V., Selecting agricultural best management practices for water conservation and quality improvements using Atanassov’s intuitionistic fuzzy sets, Water Resour. Manage., 2010, vol. 24, no. 15, pp. 4589–4612.

    Article  Google Scholar 

  18. Imani, S., Delavar, M., and Niksokhan, M.H., Periodical effects of land uses on water quality of Zrebar Lake, Iranian J. Geol., 2016, vol. 36.

  19. Jamshidi, S., Niksokhan, M.H., and Ardestani, M., Surface water quality management using an integrated discharge permit and the reclaimed water market, Water Sci. Technol., 2014, vol. 70, no. 5, pp. 917–924.

    Article  Google Scholar 

  20. Jamshidi, S., Niksokhan, M.H., Ardestani, M., and Jaberi, H., Enhancement of surface water quality using trading discharge permits and artificial aeration, Environ. Earth Sci., 2015. doi https://doi.org/10.1007/s12665-015-4663-5

  21. Jha, M., Gassman, P.W., Secchi, S., Gu, R., and Arnold, J., Effect of watershed subdivision on SWAT flow, sediment, and nutrient predictions, J. Am. Water Resour. Assoc., 2004, vol. 40, no. 3, pp. 811–825.

    Article  Google Scholar 

  22. Lam, Q.D., Schmalz, B., and Fohrer, N., The impact of agricultural Best Management Practices on water quality in a North German lowland catchment, Environ. Monit. Assess., 2011, vol. 183, nos. 1–4, pp. 351–379.

    Article  Google Scholar 

  23. Liu, X., Chen, Q., and Zeng, Z., Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed, Water Sci. Technol., 2014, vol. 69, no. 8, pp. 1689–1696. doi https://doi.org/10.2166/wst.2014.076

    Article  Google Scholar 

  24. Liu, M. and Lu, J., Predicting the impact of management practices on river water quality using SWAT in an agricultural watershed, Desalin. Water Treat., 2015, vol. 54, no. 9, pp. 2396–2409.

    Article  Google Scholar 

  25. Luo, Q., Li, Y., Wang, K., and Wu, J., Application of the SWAT model to the Xiangjiang river watershed in subtropical central China, Water Sci. Technol., 2013, vol. 67, no. 9, pp. 2110–2116. doi https://doi.org/10.2166/wst.2013.100

    Article  Google Scholar 

  26. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 2007, vol. 50, no. 3, pp. 885–900.

    Article  Google Scholar 

  27. Neitsch, S.L, Arnold, J.G, Kiniry, J.R, Williams, J.R., and King, K.W., Soil and Water Assessment Tool, Theoretical Documentation, Version 2005, Temple, Tex.: Texas A&M Univ., Blacklands Res. Center, 2005. www.brc.tamus.edu/swat

    Google Scholar 

  28. Niraula, R., Kalin, L., Srivastava, P., and Anderson, C.J., Identifying critical source areas of nonpoint source pollution with SWAT and GWLF, Ecol. Modell., 2013, vol. 268, pp. 123–133.

    Article  Google Scholar 

  29. Niraula, R., Kalin, L., Wang, R., and Srivastava, P., Determining nutrient and sediment critical source areas with SWAT: effect of lumped calibration, Trans. ASABE, 2012, vol. 55, no. 1, pp. 137–147.

    Article  Google Scholar 

  30. Santhi, C., Arnold, J.G., White, M., Di Luzio, M., Kannan, N., Norfleet, L., Atwood, J., Kellogg, R., Wang, X., Williams, J.R., and Gerik, T., Effects of agricultural conservation practices on N loads in the Mississippi–Atchafalaya River Basin, J. Environ. Qual., 2013, vol. 43, no. 6, pp. 1903–1915. doi https://doi.org/10.2134/jeq2013.10.0403

    Article  Google Scholar 

  31. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., Hauck, L.M., Validation of the SWAT model on a large river basin with point and nonpoint sources, J. Am. Water Resour. Assoc., 2001, vol. 37, no. 5, pp. 1169–1188.

    Article  Google Scholar 

  32. Shang, X., Wang, X., Zhang, D., Chen, W., Chen, X., and Kong, H., An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale, Ecol. Modell., 2012, vol. 226, pp. 1–10.

    Article  Google Scholar 

  33. Sorooshian, S. and Gupta, V.K., Model calibration, in Computer Models of Watershed Hydrol., Water Resour. Publ., Singh, V.P., Ed., 1995, pp. 23–68.

    Google Scholar 

  34. Srinivasan, M.S., Gérard-Marchant, P., Tamiel, V., Gburek, W.J., and Steenhuis, T.S., Watershed scale modeling of critical source areas of runoff generation and phosphorus transport, J. Am. Water Resour. Assoc., 2005, vol. 41, no. 2, pp. 361–375.

    Article  Google Scholar 

  35. Strauss, P., Leone, A., Ripa, M.N., Turpin, N., Lescot, M., Laplana, J., and Laplana, R., Using critical source areas for targeting cost-effective best management practices to mitigate phosphorus and sediment transfer at the watershed scale, British Soc. Soil Sci., 2007, vol. 23, Suppl. 1, pp. 144–153.

    Google Scholar 

  36. Tripathi, M.P., Panda, R.K., and Raghuwanshi, N.S., Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT model, Biosyst. Eng., 2003, vol. 85, no. 3, pp. 365–379.

    Article  Google Scholar 

  37. USDA SCS (Soil Conservation Service), SCS National Engineering Handbook. Section 4, Hydrology, Washington, DC, USA, 1972.

  38. Yasin, H.Q. and Clemente, R.S., Application of SWAT model for hydrological and water quality modelling in Thachin River Basin, Thailand, Arabian J. Sci. Engineering, 2014, vol. 39, no. 3, pp. 1671–1684.

    Article  Google Scholar 

  39. Zhukova, T.V., Long-term dynamics of phosphorus in the Narochanskie Lakes and factors determining it, Water Resour., 2013, vol. 40, no. 5, pp. 510–517.

    Article  Google Scholar 

  40. Zou, Z.H., Yi, Y., and Sun, J.N., Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment, J. Environ. Sci., 2006, vol. 18, no. 5, pp. 1020–1023.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaye Imani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somaye Imani, Delavar, M. & Niksokhan, M.H. Identification of Nutrients Critical Source Areas with SWAT Model under Limited Data Condition. Water Resour 46, 128–137 (2019). https://doi.org/10.1134/S0097807819010147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807819010147

Keywords:

Navigation