Skip to main content
Log in

A new map of wetlands in the southern taiga of the West Siberia for assessing the emission of methane and carbon dioxide

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A typological map of wetlands in the southern taiga of West Siberia has been compiled based on high-resolution Landsat images. In accordance with the new map, the area of southern-taiga wetlands is estimated at 12.02 Mha at the total wetland area percentage in the subzone estimated at 28%. The final accuracy of determination of various wetland classes is 80%. The use of the new map improved the estimates of methane emissions from southern-taiga wetlands from 0.84 to 1.57 MtCH4/year, i.e., by 87%. The respiration of wetland ecosystems in the southern taiga of the West Siberia is estimated at 67 MtCO2/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bronzov, A.Ya., Hypnum bogs on the southern margin of West Siberian Plain taiga, Pochvovedenie, 1936, no. 2, pp. 224–245.

    Google Scholar 

  2. Glagolev, M.V., Sirin, A.A., Lapshina, E.A., and Filippov, I.V., Studying fluxes of carbon-containing greenhouse gases in bog ecosystems of West Siberia, Vestn. TGPU, 2010, no. 3, pp. 120–127.

    Google Scholar 

  3. Glagolev, M.V., Filippov, I.V., Kleptsova, I.E., and Maksyutov, Sh.Sh., Assessing methane flux from soils in Russia based on simplest mathematical models, in Materialy Tret’ei Nats. nauch. konf. s mezhdunar. uchastiem “Matematicheskoe modelirovanie v ekologii” (Proc. Third National Sci. Conf. with Foreign Participants “Mathematical Modeling in Ecology”), Pushchino, 2013, pp. 75–76.

  4. Glagolev, M.V., Chistotin, M.V., and Sirin, A.A., Emission of greenhouse C-gases from natural and economically transformed bogs: case study of an area in Tomsk oblast, in Pochvy. Natsional’noe dostoyanie Rossii (Soils. National Endowment of Russia), Novosibirsk: Nauka-Tsentr, 2004.

  5. Glagolev, M.V., Chistotin, M.V., Shnyrev, N.A., and Sirin, A.A., Emission of CO2 and CH4 from economically affected and undisturbed peat soils in the southern West Siberia, in “Biosfernye funktsii pochvennogo pokrova,” Konf., posvyashch. 100-letiyu so dnya rozhdeniya chl.-korr. AN SSSR V.A. Kovdy (Conf. Devoted to the 100th Anniversary of Corr. Member of USSR Academy of Sciences V.A. Kovda, Biospheric Functions of Soil Cover), Pushchino, 2005, p. 21.

    Google Scholar 

  6. Golovatskaya, E.A., Dyukarev E.A., Ippolitov I.I., and Kabanov, M.V., Influence of landscape and hydrometeorological conditions on CO2 emission in peatland ecosystems, Dokl. Earth Sci., vol. 418, no. 4, pp. 187–190.

  7. Lapshina, E.D., Korolyuk, A.Yu., Bloiten, V., Mul’diyarov, E.Ya., and Valutskii, V.I., Vegetation cover structure of the western Vasyugan Swamp: case study of Uzas Key Area, Sib. Ekol. Zh., 2000, no. 5, pp. 563–576.

    Google Scholar 

  8. Naumov, A.V., Wetlands as a source of greenhouse gases in West Siberia, Vtoraya Mezhdunar. konf. “Emissiya i stok parnikovykh gazov na territorii severnoi Evrazii” (Second Int. Conf. “Emission and Discharge of Greenhouse Gases in the Territory of Northern Eurasia”), Pushchino, 2003, pp. 86–87.

  9. Naumov, A.V., Components and processes of carbon cycle in upland bogs of West Siberia, Tez. rabochego soveshch. Klimaty i tsikl ugleroda: proshloe i sovremennost’, (Abstr. Work. Meeting Climate and Carbon Cycles: The Past and the Present), Moscow: GEOS, 1999, p. 60.

  10. Romanova, E.A., Bybina, R.T., Golitsina, E.F., Ivanova, G.M., Usova, L.I., and Trushnikova, L.G., Tipologicheskaya karta bolot Zapadno-Sibirskoi ravniny. Masshtab 1: 2500000 (Typological Map of Wetlands in the West Siberian Plain. Scale 1: 2500000), Leningrad: GUGK, 1977.

    Google Scholar 

  11. Usova, L.I., Prakticheskoe posobie po landshaftnomu deshifrirovaniyu aerofotosnimkov razlichnykh tipov bolot Zapadnoi Sibiri (Practical Guide on Landscape Interpretation of Aerial Photographs of Different Types of Wetlands in West Siberia), St. Petersburg: Nestor-Istoriya, 2009.

    Google Scholar 

  12. Adam, E., Mutanga, O., and Rugege, D., Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review, Wetlands Ecol. Manage., 2010, vol. 18, no. 3, pp. 281–296.

    Article  Google Scholar 

  13. Alber, Y.I., Metric and generalized projection operators in Banach spaces: properties and applications, Lecture Notes in Pure and Applied Mathematics, 1996, pp. 15–50.

  14. Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data, Remote Sens. Environ., 1991, vol. 37, no. 1, pp. 35–46.

    Article  Google Scholar 

  15. Bartlett, K.B. and Harriss, R.C., Review and assessment of methane emissions from wetlands, Chemosphere, 1993, vol. 26, no. 1, pp. 261–320.

    Article  Google Scholar 

  16. Denman, K.L., Brasseur, G.P., Chidthaisong, A., et al., Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge Univ. Press, 2007, chap. 7, pp. 499–588.

    Google Scholar 

  17. Gedney, N., Cox, P.M., and Huntingford, C., Climate feedback from wetland methane emissions, Geoph. Res. Lett., 2004, vol. 31, no. 20, p. L20503.

    Article  Google Scholar 

  18. Giri, C., Status and distribution of mangrove forests of the world using earth observation satellite data, Global Ecol. Biogeogr., 2011, vol. 20, no. 1, pp. 154–159.

    Article  Google Scholar 

  19. Glagolev, M.V., Golovatskaya, E.A., and Shnyrev, N.A., Greenhouse gas emission in West Siberia, Contemp. Probl. Ecol., 2008, vol. 1, no. 1, pp. 136–146.

    Google Scholar 

  20. Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T., Regional methane emission from West Siberia mire landscapes, Environ. Res. Lett., 2011, vol. 6, no. 4, p. 045214.

    Article  Google Scholar 

  21. Glagolev, M.V., Sabrekov, A.F., Kleptsova, I.E., Filippov, I.V., Lapshina, E.D., Machida, T., and Maksyutov, Sh.Sh., Methane emission from bogs in the subtaiga of Western Siberia: the development of standard model, Eurasian Soil Sci., 2012, vol. 45, no. 10, pp. 947–957.

  22. Gluck, M.J., Rempel, R.S., and Uhlig, P., An evaluation of remote sensing for regional wetland mapping applications. Sault Ste. Marie: Ontario Forest Res. Inst., 1996, no. 137.

  23. Golovatskaya, E.A., Belova, E.V., Dementieva, T.V., and Inisheva, L.I., Seasonal dynamics of carbon flows in native and antropogeneous oligotrophic and eutrophic bogs, Mater. mezhdunar. polevogo simpoz. “Torfyaniki Zapadnoi Sibiri i tsikl ugleroda: proshloe i nastoyashchee” (Proc. Int. Field Symp. “Peatlands of West Siberia and Carbon Cycle: the Past and the Present”), Vasil’ev, S.V., Titlyanova, A.A., Velichko, A.A., Eds., Novosibirsk: Agenstvo Sibprint, 2001.

  24. Gong, P., Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 2013, vol. 34, no. 7, pp. 2607–2654.

    Article  Google Scholar 

  25. Homer, C. and Gallant, A., Partitioning the conterminous United States into mapping zones for Landsat TM land cover mapping. Unpublished US Geol. Survey rep. 2001. http://landcover. usgs. gov/pdf/homer. pdf.

  26. Hutchinson, G.L. and Mosier, A.R., Improved soil cover method for field measurement of nitrous-oxide fluxes, Soil Sci. Soc. Am. J., 1981, vol. 45, pp. 311–316.

    Article  Google Scholar 

  27. Kim, H.-S., Maksyutov, S., Glagolev, M.V., Machida, T., Patra, P.K., Sudo, K., and Inoue, G., Evaluation of methane emissions from West Siberian wetlands based on inverse modeling, Environ. Res. Lett., 2011, vol. 6, no. 3, p. 035201. doi 10.1088/1748- 9326/6/3/035201

    Article  Google Scholar 

  28. Kleptsova, I., Glagolev, M., Lapshina, E., and Maksyutov, S., Land cover classification of West Siberian wetlands and its application to estimating methane emissions, 1st Int. Conf. “Global Warming and the Human-Nature Dimension in Siberia: Social Adaptation to the Changes of the Terrestrial Ecosystem, with an Emphasis on Water Environments,” Kyoto, Japan, 2012, pp. 38–41.

    Google Scholar 

  29. Panikov, N.S., CH4 and CO2 emissions from northern wetlands of Russia: source strength and controlling mechanisms, Proc. Int. Sympos. Global Cycles of Atm. Greenhouse Gases, Sendai, 1994, pp. 100–112.

    Google Scholar 

  30. Peregon, A., Maksyutov, S., and Yamagata, Y., An image-based inventory of the spatial structure of West Siberian wetlands, Environ. Res. Lett., 2009, vol. 4, no. 4, p. 045014.

    Article  Google Scholar 

  31. Repo, M.E., Huttunen, J.T., Naumov, A.V., Chichulin, A.V., Lapshina, E.D., Bleuten, W., and Martikainen, P.J., Release of CO2 and CH4 from small wetland lakes in Western Siberia, Tellus B., vol. 59, no. 5, pp. 788–796.

  32. Sabrekov, A.F., Glagolev, M.V., Kleptsova, I.E., Machida, T., and Maksyutov, S.S., Methane emission from bog complexes of the West Siberian taiga, Eurasian Soil Sci., vol. 46, no. 12, pp. 1182–1193. doi 10.1134/S1064229314010098

  33. Sabrekov, A.F., Runkle, B.R.K., Glagolev, M.V., Kleptsova, I.E., and Maksyutov, S.S., Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling, Environ. Res. Lett., 2014, vol. 9, no. 4, p. 045008. doi 10.1088/1748- 9326/9/4/045008

    Article  Google Scholar 

  34. Shindell, D.T., Walter, B.P., and Faluvegi, G., Impacts of climate change on methane emissions from wetlands, Geophys. Res. Lett., 2004, vol. 31, no. 21.

  35. Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., and Macomber, S.A., Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?, Remote sensing of Environ., 2001, vol. 75, no. 2, pp. 230–244.

    Article  Google Scholar 

  36. Velichko, A.A., West Siberian Plain as a late glacial desert, Quaternary Int., 2011, vol. 237, no. 1, pp. 45–53.

    Article  Google Scholar 

  37. Zhu, X., Rising methane emissions in response to climate change in Northern Eurasia during the 21st century, Environ. Res. Lett., 2011, vol. 6, no. 4, p. 045211.

    Article  Google Scholar 

  38. Zhu, X., Zhuang, Q., Qin, Z., Glagolev, M., and Song, L., Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks, Global Biogeochem. Cycles, vol. 27, no. 2, pp. 592–604. doi 10.1002/gbc.20052

  39. Zhuang, Q., CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century, Geophys. Res. Lett., 2006, vol. 33, no. 17.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Terent’eva.

Additional information

Original Russian Text © I.E. Terent’eva, A.F. Sabrekov, M.V. Glagolev, E.D. Lapshina, B.A. Smolentsev, Sh.Sh. Maksyutov, 2017, published in Vodnye Resursy, 2017, Vol. 44, No. 2, pp. 209–220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terent’eva, I.E., Sabrekov, A.F., Glagolev, M.V. et al. A new map of wetlands in the southern taiga of the West Siberia for assessing the emission of methane and carbon dioxide. Water Resour 44, 297–307 (2017). https://doi.org/10.1134/S0097807817020154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807817020154

Keywords

Navigation