Skip to main content
Log in

Role of nitrates in the adaptation of fish to hypoxic conditions

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The paper reviews scientific and practical aspects of research on the metabolism of nitrates into nitrate (nitrite) reductase in the nitric oxide cycle in fish under hypoxic conditions. Literature data are given about enzymes involved in nitrate reductase reactions and how oxygen shortage affects their activity. The environmental factors that may participate in the processes of nitrate reduction to nitrites as well as the ones which may influence the kinetics of nitrate in fishes are considered. Examined results indicate that certain components of the conservative L-arginine-dependent nitric oxide cycle pass in a number of vertebrate animals. Then, the contour cycle of nitric oxide in the fish shows a wide range of diversity which is represented by phylogenetically ancient biochemical mechanisms of nitrite (nitrate) reductase. First of all, the presence or absence of hemoglobin is distinguished. Secondly, a wider range of expression of different myoglobin isoforms appears. Furthermore, the kinetics of nitrates in fish is distinctly dependent on abiotic environmental factors. The analysis of the literature confirms the thesis that nitrates are an important substrate for the nitrate (nitrite) reductase loop cycle of nitric oxide in fishes. Secondly, their role in the compensation of arginineindependent NO synthesis increases with decreasing oxygen levels in the environment. Thirdly, the provided research results are a basis for indicating xanthine oxidase and possibly the microflora of the digestive system as the basic units of the nitrate reductase system in the body of fish. The practical aspect of the question, in our opinion, is the most meaningful presence of numerous studies that emphasize the need to find physiological reactions that precede the formation of pathological changes induced by the influence of combined effects of nitrates and hypoxia on the organism of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basireddy, M., Isbell, T.S., Teng, X., et al., Effects of sodium nitrite on ischemia-reperfusion injury in the rat kidney, Am. J. Physiol. Renal Physiol., 2006, vol. 290, no. 4, pp. F779–F786.

    Article  Google Scholar 

  2. Beers, J.M., Borley, K.A., and Sidell, B.D., Relationship among circulating hemoglobin, nitric oxide synthase activities and angiogenic poise in redand whiteblooded Antarctic notothenioid fishes, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2010, vol. 156, no. 4 pp. 422–429.

    Article  Google Scholar 

  3. Ben, J., Lim, T.M., Phang, V.P., and Chan, W.K., Cloning and tissue expression of 6-pyruvoyl tetrahydropterin synthase and xanthine dehydrogenase from Poecilia reticulate, Mar. Biotechnol. (N.Y.), 2003, vol. 5, no. 6 pp. 568–578.

    Article  Google Scholar 

  4. Bilbao, E., de Cerio, O.D., Cajaraville, M.P., and Cancio, I., Cloning and expression pattern of peroxisomal enzymes in the mussel Mytilus galloprovincialis and in the thicklip grey mullet Chelon labrosus: generation of new tools to study peroxisome proliferation, Mar. Environ. Res., 2006, vol. 62 (Suppl), pp. S109–112.

    Article  Google Scholar 

  5. Calvert, J.W. and Lefer, D.J., Search for related content Myocardial protection by nitrite, Cardiovasc. Res., 2009, vol. 83, no. 2 pp. 195–203.

    Article  Google Scholar 

  6. Camargo, J.A. and Alonso, A., Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 2006, vol. 32, no. 6 pp. 831–849.

    Article  Google Scholar 

  7. Camargo, J.A., Alonso, A., and Salamanca, A., Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates, Chemosphere, 2005, vol. 58, pp. 1255–1267.

    Article  Google Scholar 

  8. Cossins, A.R., Williams, D.R., Foulkes, N.S., et al., Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish, J. Experimental Biol., 2009, vol. 212, pp. 627–638.

    Article  Google Scholar 

  9. Doblander, C. and Lackner, R., Metabolism and detoxification of nitrite by trout hepatocytes, Biochim. Biophys. Acta, 1996, vol. 1289, no. 2 pp. 270–274.

    Article  Google Scholar 

  10. Dolomatov, S.I., Shekk, P.V., Zukow, W., et al., Features of nitrogen metabolism in fishes, Rev. Fish Biol. Fisheries, 2011, vol. 21, pp. 733–737.

    Article  Google Scholar 

  11. Dolomatov, S., Zukow, W., and Brudnicki, R., Role of temperature in regulation of the life cycle of temperate fish, Russ. J. Mar. Biol., 2013, vol. 39, no. 9(2), pp. 81–91.

    Article  Google Scholar 

  12. Dolomatov, S., Zukow, W., Hagner–Derengowska, M., et al., Toxic and physiological aspects of metabolism of nitrites and nitrates in the fish organism, J. Health Sci., 2013, vol. 3, no. 2 pp. 68–91.

    Google Scholar 

  13. Dolomatov, S.I., Zukow, W., Novikov, N.Yu., et al., The regulation of osmotic and ionic balance in fish reproduction and in the early stages of ontogeny, Russ. J. Mar. Biol., 2012, vol. 38, no. 5 pp. 365–374.

    Article  Google Scholar 

  14. Dolomatov, S., Zukow, W., and Skomarovskiy, D., Features nitrogen metabolism fish and methods neutralize the product of nitrogen metabolism fish aquaculture, J. Health Sci., 2011, vol. 1, no. 3 pp. 13–37.

    Google Scholar 

  15. Ebbesson, L.O.E., Tipsmark, Ch.K., Holmqvist, B., et al., Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+, K+ATPase, J. Experimental Biol., 2005, vol. 205, pp. 1011–1017.

    Article  Google Scholar 

  16. Edwards, T.M. and Guillette, L.J., Reproductive characteristics of male mosquitofish (Gambusia holbrooki) from nitrate-contaminated springs in Florida, Aquat. Toxicol., 2007, vol. 85, no. 1 pp. 40–47.

    Article  Google Scholar 

  17. Edwards, T.M., Miller, H.D., and Guillette, L.J., Water quality influences reproduction in female mosquitofish (Gambusia holbrooki) from eight Florida Springs, Environ. Health Perspect., 2006, vol. 114 no. S–1, pp. 69–75.

    Google Scholar 

  18. Evans, D.H. and Gunderson, M.P., A prostaglandin, not NO,mediates endothelium-dependent dilation in ventral aorta of shark (Squalus acanthias), Am. J. Physiol. Regul. Integr. Comp. Physiol., 1998, vol. 274, no. 4, pp. R1050–R1057.

    Google Scholar 

  19. Evans, D.H., Piermarini, P.M., and Choe, K.P., The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste, Physiol. Rev., 2005, vol. 85, no. 1 pp. 97–177.

    Article  Google Scholar 

  20. Feelisch, M., Fernandez, B.O., Bryan, N.S., et al., Tissue processing of nitrite in hypoxia an intricate interplay of nitric oxide-generating and scavenging systems, J. Biol. Chem., 2008, vol. 283, no. 49 pp. 33927–33934.

    Article  Google Scholar 

  21. Fish, J.E., Yan, M.S., Matouk, Ch.C., et al., Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones, J. Biol. Chem., 2010, vol. 285, pp. 810–826.

    Article  Google Scholar 

  22. Fluck, M., Webster, K.A., Graham, J., et al., Coping with cyclic oxygen availability: evolutionary aspects, Integrative and Comparative Biol., 2007, vol. 47, no. 4 pp. 524–531.

    Article  Google Scholar 

  23. Grosell, M. and Jensen, F.B., uptake and excretion in the intestine of the european flounder (Platichthys flesus), J. Experimental Biol., 1999, vol. 202, pp. 2103–2110.

    Google Scholar 

  24. Hannas, B.R., Das, P.C., Li, H., and Leblanc, G.A., Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna, PLoS One, 2010, vol. 5, no. 8, pp. e12453, DOI: 10.1371/journalpone.0012453.

    Article  Google Scholar 

  25. Hansen, M.N. and Jensen, F.B., Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions, J. Experimental Biol., 2010, vol. 213, pp. 3593–3602.

    Article  Google Scholar 

  26. Hegazi, M.M., Attia, Z.I., and Ashour, O.A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure, Aquat. Toxicol., 2010, vol. 99, no. 2 pp. 118–125.

    Article  Google Scholar 

  27. Hendgen-Cotta, U.B., Merx, M.W., Shiva, S., et al., Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemiareperfusion injury, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 29 pp. 10256–10261.

    Article  Google Scholar 

  28. Helbo, S. and Fago, A., Allosteric modulation by S-nitrosation in the low–O2 affinity myoglobin from rainbow trout, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 300, no. 1, pp. R101–108.

    Article  Google Scholar 

  29. Hoogewijs, D., Terwilliger, N.B., Webster, K.A., et al., From critters to cancers: bridging comparative and clinical research on oxygen sensing, HIF signaling, and adaptations towards hypoxia, Integrative and Comparative Biol., 2007, vol. 47, no. 4 pp. 552–577.

    Article  Google Scholar 

  30. Ingram, Th.E., Pinder, A.G., Bailey, D.M., et al., Lowdose sodium nitrite vasodilates hypoxic human pulmonary vasculature by a means that is not dependent on a simultaneous elevation in plasma nitrite, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 298, no. 2, pp. H331–H339.

    Article  Google Scholar 

  31. Jansson, E., Huang, L., Malkey, R., et al., A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis, Nature Chem. Biol., 2008, vol. 4, no. 7 pp. 411–417.

    Article  Google Scholar 

  32. Jensen, F.B., Nitrite disrupts multiple physiological functions in aquatic animals, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2003, vol. 135, no. 1 pp. 9–24.

    Article  Google Scholar 

  33. Jensen, F.B., Nitric oxide formation from nitrite in zebrafish, J. Experimental Biol., 2007, vol. 210, pp. 3387–3394. NO2–HCO3

    Article  Google Scholar 

  34. Jensen, F.B., The role of nitrite in nitric oxide homeostasis: a comparative perspective, Biochim. Biophys. Acta, 2009, vol. 1787, no. 7 pp. 841–848.

    Article  Google Scholar 

  35. Jensen, F.B. and Hansen, M.N., Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish, Aquat. Toxicol., 2011, vol. 101, no. 2 pp. 318–325.

    Article  Google Scholar 

  36. Jensen, F.B. and Rohde, S., Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, vol. 298, no. 4, pp. R972–R982.

    Article  Google Scholar 

  37. Kan, W.H., Hsu, J.T., Schwacha, M.G., et al., Selective inhibition of iNOS attenuates trauma-hemorrhage/ resuscitation-induced hepatic injury, J. Appl. Physiol., 2008, vol. 105, no. 4 pp. 1076–1082.

    Article  Google Scholar 

  38. Kapil, V., Webb, A.J., and Ahluwalia, A., Inorganic nitrate and the cardiovascular system, Heart, 2010, vol. 96, pp. 1703–1709.

    Article  Google Scholar 

  39. Knight, K., First study of nitric oxide metabolites in fish, J. Experimental Biol., 2010, vol. 213, DOI: 10.1242/jeb.052209.

    Google Scholar 

  40. Kovacic, S., Petrinec, Z., Matasin, Z., et al., Increased permeability of the blood-brain barrier following administration of glyceryl trinitrate in common carp (Cyprinus carpio L.), Coll. Antropol., 2008, vol. 32, no. Suppl 1, pp. 99–103.

    Google Scholar 

  41. Lai, J.C.C., Kakut, A.I., Mok, H.O.L., et al., Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen, J. Experimental Biol., 2006, vol. 209, pp. 2734–2738.

    Article  Google Scholar 

  42. Lundberg, J.O. and Weitzberg, E., NO generation from nitrite and its role in vascular control, Arteriosclerosis Thrombosis and Vascular Biol., 2005, vol. 25, pp. 915–922.

    Article  Google Scholar 

  43. Matey, V., Richards, J.G., Wang, Y., et al., The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii, J. Experimental Biol., 2008, vol. 211, pp. 1063–1074.

    Article  Google Scholar 

  44. Maher, A.R., Milsom, A.B., Gunaruwan, P., et al., Hypoxic modulation of exogenous nitrite-induced vasodilation in humans, Circulation, 2008, vol. 117, pp. 670–677.

    Article  Google Scholar 

  45. Mandic, M., Todgham, A.E., and Richards, J.G., Mechanisms and evolution of hypoxia tolerance in fish, Proc. R. Soc. B., 2009, vol. 276, no. 1657 pp. 735–744.

    Article  Google Scholar 

  46. Mcneill, B. and Perry, S.F., The interactive effects of hypoxia and nitric oxide on catecholamine secretion in rainbow trout (Oncorhynchus mykiss), J. Experimental Biol., 2006, vol. 209, pp. 4214–4223.

    Article  Google Scholar 

  47. Mitrovic, D., Dymowska, A., Nilsson, G.E., and Perry, S.F., Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 297, no. 1, pp. R224–R234.

    Article  Google Scholar 

  48. Nikinmaa, M. and Rees, B.B., Oxygen-dependent gene expression in fishes, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, vol. 288, no. 5, pp. R1079–R1090.

    Article  Google Scholar 

  49. Nilsson, G.E., Gill remodeling in fish—a new fashion or an ancient secret?, J. Experimental Biol., 2007, vol. 210, pp. 2403–2409.

    Article  Google Scholar 

  50. Nilsson, G.E. and Renshaw, G.M.C., Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark, J. Experimental Biol., 2004, vol. 207, pp. 3131–3139.

    Article  Google Scholar 

  51. Nowosad, J., Zarski, D., Bilas, M., et al., Dynamics of ammonia excretion in juvenile commom tench, Tinca tinca (L.), during intensive rearing under controlled conditions, Aquaculture Int., 2012, DOI: 10.1007/s10499-0129596-3.

    Google Scholar 

  52. Ormerod, J.O.M., Ashrafian, H., Maher, A.R., et al., The role of vascular myoglobin in nitrite-mediated blood vessel relaxation, Cardiovasc. Res., 2011, vol. 89, no. 3 pp. 560–565.

    Article  Google Scholar 

  53. Ostroumova, I.N., Biol. Basis of Feeding Fishes, St. Petersburg: GosNIORKh, 2001 [in Russian].

    Google Scholar 

  54. Padmini, E., Vijaya Geetha, B., and Usha Rani, M., Pollution induced nitrative stress and heat shock protein 70 overexpression in fish liver mitochondria, Sci. Total. Environ., 2009, vol. 407, no. 4 pp. 1307–1317.

    Article  Google Scholar 

  55. Paffett-Lugassy, N., Hsia, N., Fraenkel, P.G., et al., Functional conservation of erythropoietin signaling in zebrafish, Blood, 2007, vol. 110, no. 7 pp. 2718–2726.

    Article  Google Scholar 

  56. Pattillo, Ch.B., Bir, Sh., Rajaram, V., and Kevil, Ch.G., Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases, Cardiovasc. Res., 2011, vol. 89, no. 3 pp. 533–541.

    Article  Google Scholar 

  57. Pedersen, C.L., Faggiano, S., Helbo, S., et al., Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorhynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance, J. Experimental Biol., 2010, vol. 213, pp. 2755–2762.

    Article  Google Scholar 

  58. Porteus, C., Hedrick, M.S., Hicks, J.W., et al., Time domains of the hypoxic ventilatory response in ectothermic vertebrates, J. Comp. Physiol. B, 2011, vol. 181, no. 3 pp. 311–333.

    Article  Google Scholar 

  59. Resende, A.D., Rocha, E., and Lobo–Da–Cunha, A., Activity of purine catabolism enzymes during the reproductive cycle of male and female brown trout (Salmo trutta), Ann. N.Y. Acad. Sci., 2005, vol. 1040, pp. 444–447.

    Article  Google Scholar 

  60. Reutov, V.P., Sorokina, E.G., and Kaiushin, L.P., The nitric oxide cycle in mammals and nitrite reducing activity of heme-containing proteins, Vopr. Med. Khim. Mosc., 1994, vol. 40, no. 6 pp. 31–35.

    Google Scholar 

  61. Reutov, V.P., Sorokina, E.G., Okhotin, B.E., and Kositsyn, N.S., Cyclic Conversion of Nitric Oxide in Mammals, Moscow: Nauka, 1998 [in Russian].

    Google Scholar 

  62. Richards, J.G., Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia, J. Experimental Biol., 2011, vol. 214, pp. 191–199.

    Article  Google Scholar 

  63. Rombough, P. and Drader, H., Hemoglobin enhances oxygen uptake in larval zebrafish (Danio rerio) but only under conditions of extreme hypoxia, J. Experimental Biol., 2009, vol. 212, pp. 778–784.

    Article  Google Scholar 

  64. Shimura, R., Ijiri, K., Mizuno, R., and Nagaoka, S., Aquatic animal research in space station and its issuesfocus on support technology on nitrate toxicity, Adv. Space Res., 2002, vol. 30, no. 4 pp. 803–808.

    Article  Google Scholar 

  65. Sollid, J., De Angelis, P., Gundersen, K., and Nilsson, G.E., Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills, The Journal of Experimental Biol., 2003, vol. 206, pp. 3667–3673.

    Article  Google Scholar 

  66. Sollid, J., Kjernsli, A., De Angelis, P.M., et al., Cell proliferation and gill morphology in anoxic crucian carp, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, vol. 289, no. 4, pp. R1196–R1201.

    Article  Google Scholar 

  67. Sundin, L., Burleson, M.L., Sanchez. A.P., et al., Respiratory chemoreceptor function in vertebrates-comparative and evolutionary aspects, Integrative and Comparative Biol., 2007, vol. 47, no. 4 pp. 592–600.

    Article  Google Scholar 

  68. Tamanini, C., Basini, G., Grasselli, F., and Tirelli, M., Nitric oxide and the ovary, J. Anim. Sci., 2003, vol. 81, pp. E1–E7.

    Google Scholar 

  69. Tipsmark, Ch.K. and Madsen, S.S., Regulation of Na+/K+-ATPase activity by nitric oxide in the kidney and gill of the brown trout (Salmo trutta), J. Experimental Biol., 2003, vol. 206, pp. 1503–1510.

    Article  Google Scholar 

  70. Tota, B., Quintieri, A.M., and Angelone, T., The emerging role of nitrite as an endogenous modulator and therapeutic agent of cardiovascular function, Curr. Med. Chem., 2010, vol. 17(18), pp. 1915–1925.

    Article  Google Scholar 

  71. Tripathi, V. and Krishna, A., Changes in nitric oxide (NO) synthase isoforms and NOin the ovary of Heteropneustes fossilis (Bloch) during the reproductive cycle, J. Endocrinol., 2008, vol. 199, pp. 307–316.

    Article  Google Scholar 

  72. Van Faassen, E.E., Bahrami, S., Feelisch, M., et al., Nitrite as regulator of hypoxic signaling in mammalian physiology, Med. Res. Rev., 2009, vol. 29, no. 5 pp. 683–741.

    Article  Google Scholar 

  73. Vatsos, I.N., Kotzamanis, Y., Henry, M., et al., Monitoring stress in fish by applying image analysis to their skin mucous cells, Eur. J. Histochem., 2010, vol. 54, no. 2, p. e22, DOI: 10.4081/ejh.2010e22.

    Article  Google Scholar 

  74. Webb, A.J., Milsom, A.B., Rathod, K.S., et al., Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia role for xanthine oxidoreductase and endothelial nitric oxide synthase, Circulation Research, 2008, vol. 103, pp. 957–964.

    Article  Google Scholar 

  75. Weitzberg, E., Hezel, M., and Lundberg, J.O., Nitratenitrite-nitric oxide pathway: implications for anesthesiology and intensive care, Anesthesiol., 2010, vol. 113, no. 6 pp. 1460–1475.

    Article  Google Scholar 

  76. Weldon, M.B. and Hornbuckle, K.C., Concentrated animal feeding operations, row crops and their relationship to nitrate in eastern Iowa rivers, Environ. Sci. Technol., 2006, vol. 40, no. 10 pp. 3168–3173.

    Google Scholar 

  77. Williams, D.A., Flood, M.H., Lewis, D.A., et al., Plasma levels of nitrite and nitrate in early and recent classes of fish, Comparative Medicine, 2008, vol. 58, no. 5 pp. 431–439.

    Google Scholar 

  78. Zaouali, M.A., Ben Mosbah, I., Boncompagni, E., et al., Hypoxia inducible factor-1α accumulation in steatotic liver preservation: Role of nitric oxide, World J. Gastroenterol., 2010, vol. 16, no. 28 pp. 3499–3509.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Dolomatov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolomatov, S., Zukow, W., Dzierzanowski, M. et al. Role of nitrates in the adaptation of fish to hypoxic conditions. Water Resour 43, 177–183 (2016). https://doi.org/10.1134/S0097807816120046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807816120046

Keywords

Navigation