Skip to main content
Log in

Delsarte method in the problem on kissing numbers in high-dimensional spaces

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider extremal problems for continuous functions that are nonpositive on a closed interval and can be represented as series in Gegenbauer polynomials with nonnegative coefficients. These problems arise from the Delsarte method of finding an upper bound for the kissing number in a Euclidean space. We develop a general method for solving such problems. Using this method, we reproduce results of previous authors and find a solution in the following 11 new dimensions: 147, 157, 158, 159, 160, 162, 163, 164, 165, 167, and 173. The arising extremal polynomials are of a new type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Arestov and A. G. Babenko, “On the Delsarte scheme for estimating contact numbers,” Proc. Steklov Inst. Math. 4, 36–65 (1997).

    MathSciNet  Google Scholar 

  2. N. Dunford and J. Schwartz, Linear Operators: General Theory (Interscience, New York, 1958; Inostrannaya Lit., Moscow, 1962).

    Google Scholar 

  3. P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory (N.V. Philips’ Gloeilampenfabrieken, Eindhoven, 1973; Mir, Moscow, 1976).

    MATH  Google Scholar 

  4. G. A. Kabatyanskii and V. I. Levenshtein, “Bounds for packing on a sphere and in space,” Problems Inform. Transm. 14, 1–17, 1978.

    Google Scholar 

  5. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer-Verlag, New-York, 1988; Mir, Moscow, 1990), Vols. 1, 2.

    Book  MATH  Google Scholar 

  6. N. A. Kuklin, “The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space,” Trudy Inst. Mat. Mekh. UrO RAN 17(3), 225–232 (2011).

    Google Scholar 

  7. V. I. Levenshtein, “Bounds for packings of metric spaces and some applications,” Probl. Kibernet. 40, 44–110 (1983).

    MathSciNet  Google Scholar 

  8. V. I. Levenshtein, “Bounds for packings in n-dimensional Euclidean space,” Dokl. Akad. Nauk SSSR 245(6), 1299–1303 (1979).

    MathSciNet  Google Scholar 

  9. O. R. Musin, “The problem of the twenty-five spheres,” Russ. Math. Surv. 58(4), 794–795 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  10. V. V. Prasolov, Polynomials (Mosk. Tsentr Nepr. Mat. Obraz., Moscow, 2003; Springer-Verlag, Berlin, 2004).

    Google Scholar 

  11. V. M. Sidel’nikov, “Extremal polynomials used in bounds of code volume,” Problems Inform. Transm. 16(3), 174–186 (1980).

    MATH  MathSciNet  Google Scholar 

  12. P. K. Suetin, Classical Orthogonal Polynomials, 3rd ed. (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  13. D. V. Shtrom, “The Delsarte method in the problem of the contact numbers of Euclidean spaces of high dimensions,” Proc. Steklov Inst. Math., Suppl. 2, S162–S189 (2002).

    Google Scholar 

  14. V. A. Yudin, “The minimum of potential energy of a system of point charges,” Discrete Math. Appl. 3(1), 75–81 (1993).

    Article  MathSciNet  Google Scholar 

  15. E. J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces: Theory and Applications (Wiley, Chichester, 1987).

    Google Scholar 

  16. B. Buchberger, “An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal,” J. Symbolic Comput. 41(3–4), 475–511 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. Ph. Delsarte, “Bounds for unrestricted codes by linear programming,” Philips Res. Rep. 27, 272–289 (1972).

    MATH  MathSciNet  Google Scholar 

  18. J.-C. Faugere, “A new efficient algorithm for computing Gröbner bases (F 4),” J. Pure Appl. Algebra 139(1–3), 61–88 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  19. H. D. Mittelmann and F. Vallentin, “High-accuracy semidefinite programming bounds for kissing numbers,” Experiment. Math. 19(2), 174–178 (2010).

    Article  MathSciNet  Google Scholar 

  20. O. R. Musin, “The kissing problem in three dimensions,” Discrete Comput. Geom. 35(3), 375–384 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  21. O. R. Musin, “The kissing number in four dimensions,” Ann. Math. 168(1), 1–32 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. M. Odlyzko and N. J. A. Sloane, “New bounds on the number of unit spheres that can touch a unit sphere in n dimensions,” J. Combin. Theory, Ser. A 26(2), 210–214 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Schutte and B. L. van der Waerden, “Das Problem der dreizehn Kugeln,” Math. Ann. 125, 325–334 (1953).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kuklin.

Additional information

Original Russian Text © N.A. Kuklin, 2012, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Vol. 18, No. 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuklin, N.A. Delsarte method in the problem on kissing numbers in high-dimensional spaces. Proc. Steklov Inst. Math. 284 (Suppl 1), 108–123 (2014). https://doi.org/10.1134/S0081543814020102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543814020102

Keywords

Navigation