Abstract
We present an explicit description of the affine variety M Fil of Lie algebras of maximal class (filiform Lie algebras): the formulas of polynomial equations that determine this variety are written down. The affine variety M Fil can be considered as the base of the nilpotent versal deformation of the ℕ-graded Lie algebra m0.
Similar content being viewed by others
References
D. V. Millionshchikov, “Cohomology of Graded Lie Algebras of Maximal Class with Coefficients in the Adjoint Representation,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 263, 106–119 (2008) [Proc. Steklov Inst. Math. 263, 99–111 (2008)].
A. Fialowski, “Classification of Graded Lie Algebras with Two Generators,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 2, 62–64 (1983) [Moscow Univ. Math. Bull. 38 (2), 76–79 (1983)].
M. Hall, Jr., Combinatorial Theory (Blaisdell Publ. Co., Waltham, MA, 1967).
F. G. Echarte, M. C. Márquez, and J. Núñez, “A Constructive Method to Determine the Variety of Filiform Lie Algebras,” Czech. Math. J. 56, 1281–1299 (2006).
A. Fialowski and D. Fuchs, “Construction of Miniversal Deformations of Lie Algebras,” J. Funct. Anal. 161(1), 76–110 (1999).
A. Fialowski and D. Millionschikov, “Cohomology of Graded Lie Algebras of Maximal Class,” J. Algebra 296(1), 157–176 (2006).
A. Fialowski and F. Wagemann, “Cohomology and Deformations of the Infinite-Dimensional Filiform Lie Algebra m0,” J. Algebra 318(2), 1002–1026 (2007).
You. B. Hakimjanov, “Variété des lois d’algèbres de Lie nilpotentes,” Geom. Dedicata 40, 269–295 (1991).
Yu. Khakimdjanov, “Varieties of Lie Algebra Laws,” in Handbook of Algebra, Ed. by M. Hazewinkel (North-Holland, Amsterdam, 2000), Vol. 2, pp. 509–541.
D. V. Millionschikov, “Graded Filiform Lie Algebras and Symplectic Nilmanifolds,” in Geometry, Topology, and Mathematical Physics (Am. Math. Soc., Providence, RI, 2004), AMS Transl., Ser. 2, 212, pp. 259–279.
A. Nijenhuis and R. W. Richardson, Jr., “Deformations of Lie Algebra Structures,” J. Math. Mech. 17(1), 89–105 (1967).
A. Shalev and E. I. Zelmanov, “Narrow Lie Algebras: A Coclass Theory and a Characterization of the Witt Algebra,” J. Algebra 189(2), 294–331 (1997).
A. Shalev and E. I. Zelmanov, “Narrow Algebras and Groups,” J. Math. Sci. 93(6), 951–963 (1999).
M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Vol. 266, pp. 184–201.
Rights and permissions
About this article
Cite this article
Millionshchikov, D.V. The variety of Lie algebras of maximal class. Proc. Steklov Inst. Math. 266, 177–194 (2009). https://doi.org/10.1134/S0081543809030109
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0081543809030109