Skip to main content
Log in

Multiplicative inequalities for the L 1 norm: Applications in analysis and number theory

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to multiplicative lower estimates for the L 1 norm and their applications in analysis and number theory. Multiplicative inequalities of the following three types are considered: martingale (for the Haar system), complex trigonometric (for exponential sums), and real trigonometric. A new method for obtaining sharp bounds for the integral norm of trigonometric and power series is proposed; this method uses the number-theoretic and combinatorial characteristics of the spectrum. Applications of the method (both in H 1 and L 1) to an important class of power density spectra, including [n α] with 1 ≤ α < ∞, are developed. A new combinatorial theorem is proved that makes it possible to estimate the arithmetic characteristics of spectra under fairly general assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zygmund, Trigonometric Series, 2nd ed. (Cambridge Univ. Press, Cambridge, 1959; Mir, Moscow, 1965), Vols. 1, 2.

    MATH  Google Scholar 

  2. S. V. Bochkarev, “Fourier Coefficients of Functions of Class Lip α with Respect to Complete Orthonormalized Systems,” Mat. Zametki 7(4), 397–402 (1970) [Math. Notes 7, 239–242 (1970)].

    MathSciNet  Google Scholar 

  3. S. V. Bochkarev, “Absolute Convergence of Fourier Series with Respect to Complete Orthonormal Systems,” Usp. Mat. Nauk 27(2), 53–76 (1972) [Russ. Math. Surv. 27, 55–81 (1972)].

    Google Scholar 

  4. A. Zygmund, “Remarque sur la convergence absolue des séries de Fourier,” J. London Math. Soc. 3, 194–196 (1928).

    Google Scholar 

  5. R. Salem, “On a Theorem of Zygmund,” Duke Math. J. 10, 23–31 (1943).

    Article  MathSciNet  Google Scholar 

  6. J.-P. Kahane, Séries de Fourier absolument convergentes (Springer, Berlin, 1970), Ergebn. Math. Grenzgebiete 50.

    MATH  Google Scholar 

  7. I. Wik, “Criteria for Absolute Convergence of Fourier Series of Functions of Bounded Variation,” Trans. Am. Math. Soc. 163, 1–24 (1971).

    Article  MathSciNet  Google Scholar 

  8. S. V. Bochkarev, “On a Problem of Zygmund,” Izv. Akad. Nauk SSSR, Ser. Mat. 37(3), 630–638 (1973) [Math. USSR, Izv. 7, 629–637 (1973)].

    MathSciNet  Google Scholar 

  9. S. V. Bochkarev, “On the Absolute Convergence of Fourier Series in Bounded Complete Orthonormal Systems of Functions,” Mat. Sb. 93(2), 203–217 (1974) [Math. USSR, Sb. 22, 201–216 (1974)].

    MathSciNet  Google Scholar 

  10. S. V. Bochkarev, A Method of Averaging in the Theory of Orthogonal Series and Some Problems in the Theory of Bases (Nauka, Moscow, 1978), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 146 [Proc. Steklov Inst. Math. 146 (1980)].

    Google Scholar 

  11. S. V. Bochkarev, “Logarithmic Growth of Arithmetic Means of Lebesgue Functions of Bounded Orthonormal Systems,” Dokl. Akad. Nauk SSSR 223(1), 16–19 (1975) [Sov. Math., Dokl. 16, 799–802 (1975)].

    MathSciNet  Google Scholar 

  12. A. M. Olevskii, Fourier Series with Respect to General Orthogonal Systems (Springer, Berlin, 1975).

    MATH  Google Scholar 

  13. S. V. Bochkarev, “Absolute Convergence of Fourier Series with Respect to Bounded Systems,” Mat. Zametki 15(3), 363–370 (1974) [Math. Notes 15, 207–211 (1974)].

    MathSciNet  Google Scholar 

  14. S. V. Bochkarev, “Hausdorff-Young-Riesz Theorem in Lorentz Spaces and Multiplicative Inequalities,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 219, 103–114 (1997) [Proc. Steklov Inst. Math. 219, 96–107 (1997)].

    MathSciNet  Google Scholar 

  15. S. V. Konyagin, “On a Problem of Littlewood,” Izv. Akad. Nauk SSSR, Ser. Mat. 45(2), 243–265 (1981) [Math. USSR, Izv. 18, 205–225 (1982)].

    MathSciNet  Google Scholar 

  16. O. C. McGehee, L. Pigno, and B. Smith, “Hardy’s Inequality and the L 1 Norm of Exponential Sums,” Ann. Math. 113(3), 613–618 (1981).

    Article  MathSciNet  Google Scholar 

  17. S. V. Bochkarev, “Vallée-Poussin Series in the Spaces BMO, L 1, and H 1(D) and Multiplicative Inequalities,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 210, 41–64 (1995) [Proc. Steklov Inst. Math. 210, 30–46 (1995)].

    MathSciNet  Google Scholar 

  18. S. V. Bochkarev, “A New Method for Estimating the Integral Norm of Exponential Sums: Application to Quadratic Sums,” Dokl. Akad. Nauk 386(2), 156–159 (2002) [Dokl. Math. 66 (2), 210–212 (2002)].

    MathSciNet  Google Scholar 

  19. S. V. Bochkarev, “A Method for Estimating the L 1 Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 232, 94–101 (2001) [Proc. Steklov Inst. Math. 232, 88–95 (2001)].

    MathSciNet  Google Scholar 

  20. S. V. Bochkarev, “Multiplicative Inequalities for Functions from the Hardy Space H 1 and Their Application to the Estimation of Exponential Sums,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 243, 96–103 (2003) [Proc. Steklov Inst. Math. 243, 89–97 (2003)].

    MathSciNet  Google Scholar 

  21. S. V. Bochkarev, “New Multiplicative Inequalities and Estimates for the L 1-Norms of Trigonometric Series and Polynomials,” Dokl. Akad. Nauk 404(6), 727–730 (2005) [Dokl. Math. 72 (2), 762–765 (2005)].

    MathSciNet  Google Scholar 

  22. A. N. Kolmogoroff, “Une série de Fourier-Lebesgue divergente presque partout,” Fund. Math. 4, 324–328 (1923).

    Google Scholar 

  23. E. F. Beckenbach and R. Bellman, Inequalities (Springer, Berlin, 1961; Mir, Moscow, 1965).

    Google Scholar 

  24. C. Holley, “On the Representation of a Number as the Sum of Two Cubes,” Math. Z. 82, 259–266 (1963).

    Article  MathSciNet  Google Scholar 

  25. C. Holley, “On Another Sieve Method and the Numbers That Are a Sum of Two hth Powers,” Proc. London Math. Soc. 43(1), 73–109 (1981).

    MathSciNet  Google Scholar 

  26. S. V. Bochkarev, “New Inequalities in the Littlewood-Paley Theory and Estimates of the L 1 Norm of Trigonometric Series and Polynomials,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 248, 64–73 (2005) [Proc. Steklov Inst. Math. 248, 59–68 (2005)].

    MathSciNet  Google Scholar 

  27. S. V. Konyagin, “On a Bound for the L 1 Norm of an Exponential Sum,” in Int. Conf. on the Theory of Approximation of Functions and Operators (Yekaterinburg, 2000), pp. 88–89.

  28. M. Z. Garaev, “Upper Bounds for the Number of Solutions of a Diophantine Equation,” Trans. Am. Math. Soc. 357(6), 2527–2534 (2005).

    Article  MathSciNet  Google Scholar 

  29. S. V. Bochkarev, “Multiplicative Estimates for the L 1 Norm of Exponential Sums,” in Metric Function Theory and Related Problems of Analysis (AFTs, Moscow, 1999), pp. 57–68 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Bochkarev, 2006, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Vol. 255, pp. 55–70.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochkarev, S.V. Multiplicative inequalities for the L 1 norm: Applications in analysis and number theory. Proc. Steklov Inst. Math. 255, 49–64 (2006). https://doi.org/10.1134/S0081543806040055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543806040055

Keywords

Navigation