Skip to main content
Log in

Hydrogen-Accumulating Materials Based on Titanium and Iron Alloys (Review)

  • HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The development of compact, safe, and efficient methods for storing hydrogen is one of the key problems of hydrogen energy. Currently used technologies for storing hydrogen in the form of compressed gas or cryogenic liquid require significant capital investments and maintenance costs for compressor and cryogenic equipment, are characterized by high energy costs, and their implementation requires special safety measures as well as the use of hydrogen-neutral structural materials. A promising way to solve these problems for medium-scale storage systems is the use of metal hydrides, which provide the simplest, most compact, and safe hydrogen storage compared to traditional methods. However, the high cost of hydride-forming materials hinders the implementation of this approach. The use of alloys based on the TiFe intermetallic compound would reduce the costs of metal hydride hydrogen storage by more than five times. This circumstance is the reason for the growing interest of specialists in the field of hydrogen energy technologies in hydrogen-storage materials based on titanium-iron alloys. Although hydrogen systems with the TiFe intermetallic compound and its derivatives have been studied for more than 50 years, the search for ways to increase the resistance of their hydrogen sorption characteristics to poisoning by oxygen-containing impurities in the gas and solid phases has become particularly relevant in recent years. This article provides an overview of research and development aimed at obtaining, studying the properties, and using titanium-iron alloys with improved hydrogen sorption characteristics. An analysis of the data presented in the scientific literature is presented, and approaches to the development of highly efficient hydride-forming materials based on the TiFe intermetallic compound and hydrogen-storage systems based on them are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. Percentage of a component by number of atoms.

REFERENCES

  1. S. P. Filippov and A. B. Yaroslavtsev, “Hydrogen energy: Development prospects and materials,” Russ. Chem. Rev. 90, 627–643 (2021). https://doi.org/10.1070/RCR5014

    Article  Google Scholar 

  2. T. Amirthan and M. S. A. Perera, “The role of storage systems in hydrogen economy: A review,” J. Nat. Gas Sci. Eng. 108, 104843 (2022). https://doi.org/10.1016/j.jngse.2022.104843

    Article  Google Scholar 

  3. F. Qureshi, M. Yusuf, Khan M. Arham, H. Ibrahim, B. C. Ekeoma, H. Kamyab, M. M. Rahman, A. K. Nadda, and S. Chelliapan, “A state-of-the-art review on the latest trends in hydrogen production, storage, and transportation techniques,” Fuel 340, 127574 (2023). https://doi.org/10.1016/j.fuel.2023.127574

    Article  Google Scholar 

  4. R. Morales-Ospino, A. Celzard, and V. Fierro, “Strategies to recover and minimize boil-off losses during liquid hydrogen storage,” Renewable Sustainable Energy Rev. 182, 113360 (2023). https://doi.org/10.1016/j.rser.2023.113360

    Article  Google Scholar 

  5. J. W. Makepeace, T. He, C. Weidenthaler, T. R. Jensen, F. Chang, T. Vegge, P. Ngene, Y. Kojima, P. E. de Jongh, P. Chen, and W. I. F. David, “Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress,” Int. J. Hydrogen Energy 44, 7746–7767 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.144

    Article  Google Scholar 

  6. M. V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, and V. Yartys, “The use of metal hydrides in fuel cell applications,” Prog. Nat. Sci.: Mater. Int. 27, 3–20 (2017). https://doi.org/10.1016/j.pnsc.2017.01.008

    Article  Google Scholar 

  7. S. A. Cetinkaya, T. Disli, G. Soyturk, O. Kizilkan, and C. O. Colpan, “A review on thermal coupling of metal hydride storage tanks with fuel cells and electrolyzers,” Energies (Basel) 16, 341 (2023). https://doi.org/10.3390/en16010341

    Article  Google Scholar 

  8. M. V. Lototskyy, B. P. Tarasov, and V. A. Yartys, “Gas-phase applications of metal hydrides,” J. Energy Storage 72, 108165 (2023). https://doi.org/10.1016/j.est.2023.108165

    Article  Google Scholar 

  9. G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” J. Alloys Compd. 293–295, 877–888 (1999). https://doi.org/10.1016/S0925-8388(99)00384-9

    Article  Google Scholar 

  10. Market Intelligence Platform. https://www.indexbox.io

  11. V. A. Yartys and M. V. Lototskyy, “Laves type intermetallic compounds as hydrogen storage materials: A review,” J. Alloys Compd. 916, 165219 (2022). https://doi.org/10.1016/j.jallcom.2022.165219

    Article  Google Scholar 

  12. S. Fashu, M. Lototskyy, M. W. Davids, L. Pickering, V. Linkov, S. Tai, T. Renheng, X. Fangming, P. V. Fursikov, and B. P. Tarasov, “A review on crucibles for induction melting of titanium alloys,” Mater. Des. 186, 108295 (2020). https://doi.org/10.1016/j.matdes.2019.108295

    Article  Google Scholar 

  13. Modified AB5 Type Hydrogen Storage Alloy (Jiangsu JITRI Advanced Energy Materials Research Inst., 2021). http://www.aemcn.com/en/product/327.html

  14. GfE Alloys: Product Overview. https://www.gfe.com/ en/products-and-solutions/alloys/product-overview

  15. D. S. Van Vuuren, “Titanium — An opportunity and challenge for South Africa,” in Proc. 7th Int. Heavy Minerals Conf. “What Next?”, Drakensberg, Sept. 20–23, 2009 (Southern African Inst. of Mining and Metallurgy, Johannesburg, 2009). https://www.saimm. co.za/Conferences/HMC2009/001-007_vanVuuren.pdf

  16. M. W. Davids, M. Lototskyy, and B. G. Pollet, “Manufacturing of hydride-forming alloys from mixed titanium – iron oxide,” Adv. Mater. Res. 746, 14–22 (2013). doi 10.4028/www.scientific.net/AMR.746.14

  17. M. W. Davids and M. Lototskyy, “Influence of oxygen introduced in TiFe-based hydride forming alloy on its morphology, structural and hydrogen sorption properties,” Int. J. Hydrogen Energy 37, 18155–18162 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.106

    Article  Google Scholar 

  18. G. D. Sandrock and P. D. Goodell, “Cyclic life of metal hydrides with impure hydrogen: Overview and engineering considerations,” J. Less-Common Met. 104, 159–173 (1984). https://doi.org/10.1016/0022-5088(84)90452-1

    Article  Google Scholar 

  19. R. H. Wiswall, Jr. and J. J. Reilly, “Inverse hydrogen isotope effects in some metal hydride systems,” Inorg. Chem. 11, 1691–1696 (1972). https://doi.org/10.1021/ic50113a050

    Article  Google Scholar 

  20. J. J. Reilly and R. H. Wiswall, Jr., “Iron titanium hydride: its formation, properties, and application,” Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 18 (3), 53–77 (1973).

    Google Scholar 

  21. J. J. Reilly and R. H. Wiswall, Jr., “Formation and properties of iron titanium hydride,” Inorg. Chem. 13 (1), 218–222 (1974).

    Article  Google Scholar 

  22. E. M. Dematteis, N. Berti, F. Cuevas, M. Latroche, and M. Baricco, “Substitutional effects in TiFe for hydrogen storage: A comprehensive review,” Mater. Adv. 2, 2524–2560 (2021). https://doi.org/10.1039/D1MA00101A

    Article  Google Scholar 

  23. Y.-H. Zhang, C. Li, Z.-M. Yuan, Y. Qi, S.-H. Guo, and D.-L. Zhao, “Research progress of TiFe-based hydrogen storage alloys,” J. Iron Steel Res. Int. 29, 537–551 (2022). https://doi.org/10.1007/s42243-022-00756-w

    Article  Google Scholar 

  24. H. Liu, J. Zhang, P. Sun, C. Zhou, Y. Liu, and Z. Z. Fang, “An overview of TiFe alloys for hydrogen storage: Structure, processes, properties, and applications,” J. Energy Storage 68, 107772 (2023). https://doi.org/10.1016/j.est.2023.107772

    Article  Google Scholar 

  25. J. L. Murray, “Fe–Ti (iron–titanium),” in Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, 2nd ed. (ASM International, Materials Park, Oh., 1990), Vol. 2, pp. 1783–1786.

  26. B. Friedrich, “Large-scale production and quality assurance of hydrogen storage (battery) alloys,” J. Mater. Eng. Perform. 3, 37–46 (1994). https://doi.org/10.1007/BF02654497

    Article  Google Scholar 

  27. M. M. Antonova and Y. G. Privalov, “Sintering behavior of compacts from a mixture of titanium and iron powders in hydrogen,” Sov. Powder Metall. Met. Ceram. 25, 291–296 (1986).

    Article  Google Scholar 

  28. M. Williams, M. V. Lototsky, M. W. Davids, V. Linkov, V. A. Yartys, and J. K. Solberg, “Chemical surface modification for the improvement of the hydrogenation kinetics and poisoning resistance of TiFe,” J. Alloys Compd. 509, S770–S774 (2011). https://doi.org/10.1016/j.jallcom.2010.11.063

    Article  Google Scholar 

  29. Z. Yan, F. Chen, R. Xu, Y. Liu, and B. Liu, “Microstructure evolution and properties of Ti–xFe (x = 1%, 5%, 10%, 15%) alloys prepared by vacuum sintering and hydrogen induced phase transformation sintering,” Rare Met. Mater. Eng. 49, 1031–1037 (2020).

    Google Scholar 

  30. A. A. Novakova, O. V. Agladze, and B. P. Tarasov, “Structural transformations during mechanical milling of Fe + TiH2 mixture,” Russ. J. Inorg. Chem. 45, 1288–1292 (2000).

    Google Scholar 

  31. T. Nobuki, T. Moriya, M. Hatate, J.-C. Crivello, F. Cuevas, and J.-M. Joubert, “Synthesis of TiFe hydrogen absorbing alloys prepared by mechanical alloying and SPS treatment,” Metals 8, 264 (2018). https://doi.org/10.3390/met8040264

    Article  Google Scholar 

  32. H. Shang, Y. Zhang, Y. Li, Y. Qi, S. Guo, and D. Zhao, “Investigation on gaseous and electrochemical hydrogen storage performances of as-cast and milled Ti1.1Fe0.9Ni0.1 and Ti1.09Mg0.01Fe0.9Ni0.1 alloys,” Int. J. Hydrogen Energy 43, 1691–1701 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.163

    Article  Google Scholar 

  33. V. Zadorozhnyy, E. Berdonosova, C. Gammer, J. Eckert, M. Zadorozhnyy, A. Bazlov, M. Zheleznyi, S. Kaloshkin, and S. Klyamkin, “Mechanochemical synthesis and hydrogenation behavior of (TiFe)100–xNix alloys,” J. Alloys Compd. 796, 42–46 (2019). https://doi.org/10.1016/j.jallcom.2019.04.339

    Article  Google Scholar 

  34. F. Guo, K. Namba, H. Miyaoka, A. Jain, and T. Ichikawa, “Hydrogen storage behavior of TiFe alloy activated by different methods,” Mater. Lett.: X 9, 100061 (2021). https://doi.org/10.1016/j.mlblux.2021.100061

    Article  Google Scholar 

  35. Y. Li, Y. Zhang, H. Shang, J. Gao, W. Zhang, and L. Ju, “Hydrogen storage characteristics of Ti1.04Fe0.7Ni0.1Zr0.1Mn0.1Pr0.06 alloy treated by ball milling,” J. Alloys Compd. 930, 167024 (2023). https://doi.org/10.1016/j.jallcom.2022.167024

    Article  Google Scholar 

  36. Y. Wu, C. Yin, Z. Zou, H. Wei, and X. Li, “Combustion synthesis of fine TiFe series alloy powder by magnesothermic reduction of ilmenite,” Rare Met. 25, 280–283 (2006). https://doi.org/10.1016/S1001-0521(07)60089-8

    Article  Google Scholar 

  37. Y. Kobayashi, S. Yamaoka, S. Yamaguchi, N. Hanada, S. Tada, and R. Kikuchi, “Low-temperature chemical synthesis of intermetallic TiFe nanoparticles for hydrogen absorption,” Int. J. Hydrogen Energy 46, 22611–22617 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.083

    Article  Google Scholar 

  38. L. Xiong, Y. Hua, C. Xu, J. Li, Y. Li, Q. Zhang, Z. Zhou, Y. Zhang, and J. Ru, “Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2–NaCl molten salt,” J. Alloys Compd. 676, 383–389 (2016). https://doi.org/10.1016/j.jallcom.2016.03.195

    Article  Google Scholar 

  39. M. Panigrahi, A. Iizuka, E. Shibata, and T. Nakamura, “Electrolytic reduction of mixed (Fe, Ti) oxide using molten calcium chloride electrolyte,” J. Alloys Compd. 550, 545–552 (2013). https://doi.org/10.1016/j.jallcom.2012.09.029

    Article  Google Scholar 

  40. H. Liu, J. Zhang, P. Sun, C. Zhou, Y. Liu, and Z. Z. Fang, “Effect of oxygen on the hydrogen storage properties of TiFe alloys,” J. Energy Storage 55, 105543 (2022). https://doi.org/10.1016/j.est.2022.105543

    Article  Google Scholar 

  41. F. Reidinger, J. F. Lynch, and J. J. Reilly, “An X-ray diffraction examination of the FeTi–H2 system,” J. Phys. F: Met. Phys. 12, L49–L55 (1982). https://doi.org/10.1088/0305-4608/12/3/007

    Article  Google Scholar 

  42. L. I. Kivalo, M. M. Antonova, and V. V. Skorokhod, Hydrogen Accumulation by the Titanium–Iron Intermetallic Compound (Inst. Probl. Materialoved. Akad. Nauk UkrSSR, Kiev, 1983) [in Russian].

  43. E. M. Dematteis, J. Barale, G. Capurso, S. Deledda, M. H. Sørby, F. Cuevas, M. Latroche, and M. Baricco, “In-situ neutron diffraction during reversible deuterium loading in Ti-rich and Mn-substituted Ti(Fe,Mn)0.90 alloys,” J. Alloys Compd. 935, 168150 (2023). https://doi.org/10.1016/j.jallcom.2022.168150

    Article  Google Scholar 

  44. W. Schäfer, G. Will, and T. Schober, “Neutron and electron diffraction of the FeTi-D(H) - γ-phase,” Mater. Res. Bull. 15, 627–634 (1980). https://doi.org/10.1016/0025-5408(80)90143-9

    Article  Google Scholar 

  45. J. S. Cantrell and R. C. Bowman, Jr., “Comparison of structures and electronic properties between TiCoHx and TiFeHx,” J. Less-Common Met. 130, 69–78 (1987). https://doi.org/10.1016/0022-5088(87)90088-9

    Article  Google Scholar 

  46. A. Lys, J. O. Fadonougbo, M. Faisal, J.-Y. Suh, Y.‑S. Lee, J.-H. Shim, J. Park, and Y. W. Cho, “Enhancing the hydrogen storage properties of AxBy intermetallic compounds by partial substitution: A short review,” Hydrogen 1, 38–63 (2020). https://doi.org/10.3390/hydrogen1010004

    Article  Google Scholar 

  47. E. Ulate-Kolitsky, B. Tougas, and J. Huot, “Hydrogenation of TixFe2–x-based alloys with overstoichiometric Ti ratio (x = 1.1, 1.15 and 1.2),” Int. J. Hydrogen Energy 46, 38363–38369 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.077

    Article  Google Scholar 

  48. K. B. Park, T.-W. Na, Y. D. Kim, J.-Y. Park, J.‑W. Kang, H.-S. Kang, K. Park, and H.-K. Park, “Characterization of microstructure and surface oxide of Ti1.2Fe hydrogen storage alloy,” Int. J. Hydrogen Energy 46, 13082–13087 (2021). https://doi.org/10.1016/j.ijhydene.2021.01.105

    Article  Google Scholar 

  49. V. N. Fokin, E. E. Fokina, and B. P. Tarasov, “Study of the interaction with hydrogen and ammonia of titanium and its alloys with iron,” Russ. J. Appl. Chem. 92, 35–44 (2019). https://doi.org/10.1134/S1070427219010051

    Article  Google Scholar 

  50. J. O. Fadonougbo, K. B. Park, T.-W. Na, C.-S. Park, H.-K. Park, and W.-S. Ko, “An integrated computational and experimental method for predicting hydrogen plateau pressures of TiFe1–xMx-based room temperature hydrides,” Int. J. Hydrogen Energy 47, 17673–17682 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.240

    Article  Google Scholar 

  51. H. Nagai, K. Kitagaki, and K. Shoji, “Microstructure and hydriding characteristics of FeTi alloys containing manganese,” J. Less-Common Met. 134, 275–286 (1987). https://doi.org/10.1016/0022-5088(87)90567-4

    Article  Google Scholar 

  52. P. Modi and K.-F. Aguey-Zinsou, “Titanium-iron-manganese (TiFe0.85Mn0.15) alloy for hydrogen storage: Reactivation upon oxidation,” Int. J. Hydrogen Energy 44, 16757–16764 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.005

    Article  Google Scholar 

  53. S. Pati, S. Trimbake, M. Vashistha, and P. Sharma, “Tailoring the activation behaviour and oxide resistant properties of TiFe alloys by doping with Mn,” Int. J. Hydrogen Energy 46, 34830–34838 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.041

    Article  Google Scholar 

  54. E. M. Dematteis, D. M. Dreistadt, G. Capurso, J. Jepsen, F. Cuevas, and M. Latroche, “Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn,” J. Alloys Compd. 874, 159925 (2021). https://doi.org/10.1016/j.jallcom.2021.159925

    Article  Google Scholar 

  55. W. Zheng, W. Song, T. Wu, J. Wang, Y. He, and X.‑G. Lu, “Experimental investigation and thermodynamic modeling of the ternary Ti–Fe–Mn system for hydrogen storage applications,” J. Alloys Compd. 891, 161957 (2021). https://doi.org/10.1016/j.jallcom.2021.161957

    Article  Google Scholar 

  56. V. N. Verbetskii, R. A. Sirotina, A. P. Savchenkova, and M. A. Serkova, “Calorimetric study of TiFe–H2 and Ti0.96Fe0.94V0.1–H2 systems,” Izv. Akad. Nauk SSSR, Met., No. 4, 208–211 (1988).

  57. S. V. Mitrokhin, V. N. Verbetsky, R. R. Kajumov, C. Hong, and Y. Zhang, “Hydrogen sorption peculiarities in FeTi-type Ti–Fe–V–Mn alloys,” J. Alloys Compd. 199, 155–160 (1993).

    Article  Google Scholar 

  58. A. Guéguen and M. Latroche, “Influence of the addition of vanadium on the hydrogenation properties of the compounds TiFe0.9Vx and TiFe0.8Mn0.1Vx (x = 0, 0.05 and 0.1),” J. Alloys Compd. 509, 5562–5566 (2011). https://doi.org/10.1016/j.jallcom.2011.02.036

    Article  Google Scholar 

  59. J. Y. Jung, Y.-S. Lee, J.-Y. Suh, J.-Y. Huh, and Y. W. Cho, “Tailoring the equilibrium hydrogen pressure of TiFe via vanadium substitution,” J. Alloys Compd. 854, 157263 (2021). https://doi.org/10.1016/j.jallcom.2020.157263

    Article  Google Scholar 

  60. S.-M. Lee, T.-P. Perng, H.-K. Juang, S.-Y. Chen, W.‑Y. Chen, and S.-E. Hsu, “Microstructures and hydrogenation properties of TiFel–xMx alloys,” J. Alloys Compd. 187, 49–57 (1992).

    Article  Google Scholar 

  61. T. Yang, P. Wang, C. Xia, N. Liu, C. Liang, F. Yin, and Q. Li, “Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy,” Int. J. Hydrogen Energy 45, 12071–12081 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.086

    Article  Google Scholar 

  62. K. B. Park, J. O. Fadonougbo, T.-W. Na, T. W. Lee, M. Kim, D. H. Lee, H. G. Kwon, C.-S. Park, Y. D. Kim, and H.-K. Park, “On the first hydrogenation kinetics and mechanisms of a TiFe0.85Cr0.15 alloy produced by gas atomization,” Mater. Charact. 192, 112188 (2022). https://doi.org/10.1016/j.matchar.2022.112188

    Article  Google Scholar 

  63. A. V. Bakulin, S. S. Kulkov, S. E. Kulkova, S. Hocker, and S. Schmauder, “Influence of substitutional impurities on hydrogen diffusion in B2–TiFe alloy,” Int. J. Hydrogen Energy 39, 12213–12220 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.188

    Article  Google Scholar 

  64. K. D. Ćirić, A. Kocjan, A. Gradišek, V. J. Koteski, A. M. Kalijadis, V. N. Ivanovski, Z. V. Laušević, and D. L. Stojić, “A study on crystal structure, bonding and hydriding properties of Ti–Fe–Ni intermetallics — behind substitution of iron by nickel,” Int. J. Hydrogen Energy 37, 8408–8417 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.047

    Article  Google Scholar 

  65. H. Qu, J. Du, C. Pu, Y. Niu, T. Huang, Z. Li, Y. Lou, and Z. Wu, “Effects of Co introduction on hydrogen storage properties of Ti–Fe–Mn alloys,” Int. J. Hydrogen Energy 40, 2729–2735 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.089

    Article  Google Scholar 

  66. P. Lv and J. Huot, “Hydrogen storage properties of Ti0.95FeZr0.05, TiFe0.95Zr0.05 and TiFeZr0.05 alloys,” Int. J. Hydrogen Energy 41, 22128–22133 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.091

    Article  Google Scholar 

  67. A. K. Patel, P. Sharma, and J. Huot, “Effect of annealing on microstructure and hydrogenation properties of TiFe + X wt % Zr (X = 4, 8),” Int. J. Hydrogen Energy 43, 6238–6243 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.029

    Article  Google Scholar 

  68. P. Lv, Z. Liu, and V. Dixit, “Improved hydrogen storage properties of TiFe alloy by doping (Zr + 2V) additive and using mechanical deformation,” Int. J. Hydrogen Energy 44, 27843–27852 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.249

    Article  Google Scholar 

  69. V. Razafindramanana, S. Gorsse, J. Huot, and J. L. Bobet, “Effect of hafnium addition on the hydrogenation process of TiFe alloy,” Energies 12, 3477 (2019).

    Article  Google Scholar 

  70. A. K. Patel, A. Duguay, B. Tougas, C. Schade, P. Sharma, and J. Huot, “Microstructure and first hydrogenation properties of TiFe alloy with Zr and Mn as additives,” Int. J. Hydrogen Energy 45, 787–797 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.239

    Article  Google Scholar 

  71. P. Kuziora, I. Kunce, S. McCain, N. J. E. Adkins, and M. Polański, “The influence of refractory metals on the hydrogen storage characteristics of FeTi-based alloys prepared by suspended droplet alloying,” Int. J. Hydrogen Energy 45, 21635–21645 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.216

    Article  Google Scholar 

  72. H. Leng, Z. Yu, Q. Luo, J. Yin, N. Miao, Q. Li, and K.-C. Chou, “Effect of cobalt on the microstructure and hydrogen sorption performances of TiFe0.8Mn0.2 alloy,” Int. J. Hydrogen Energy 45, 19553–19560 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.130

    Article  Google Scholar 

  73. J. Manna, B. Tougas, and J. Huot, “First hydrogenation kinetics of Zr and Mn doped TiFe alloy after air exposure and reactivation by mechanical treatment,” Int. J. Hydrogen Energy 45, 11625–11631 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.043

    Article  Google Scholar 

  74. T. Ha, S.-I. Lee, J. Hong, Y.-S. Lee, D.-I. Kim, J.‑Y. Suh, Y. W. Cho, B. Hwang, J. Lee, and J.‑H. Shim, “Hydrogen storage behavior and microstructural feature of a TiFe–ZrCr2 alloy,” J. Alloys Compd. 853, 157099 (2021). https://doi.org/10.1016/j.jallcom.2020.157099

    Article  Google Scholar 

  75. P. Lv, C. Peng, Q. Liu, C. Zhong, D. Huang, Z. Liu, Q. Zhou, and R. Zhao, “Effect of regulating the different proportions of Zr to Mn elements on the hydrogen storage properties of titanium–iron–manganese–hydrogen storage alloys,” RSC Adv. 13, 10157–10167 (2023). https://doi.org/10.1039/D3RA01131C

    Article  Google Scholar 

  76. L. Su, F. Liu, and D. Bao, “An advanced TiFe series hydrogen storage material with high hydrogen capacity and easily activated properties,” Int. J. Hydrogen Energy 15, 259–262 (1990). https://doi.org/10.1016/0360-3199(90)90045-Z

    Article  Google Scholar 

  77. J. Ma, H. Pan, X. Wang, C. Chen, and Q. Wang, “Hydrogen storage properties of FeTi1.3 + x wt %Mm (x = 0.0, 1.5, 3.0, 4.5, 6.0) hydrogen storage alloys,” Int. J. Hydrogen Energy 25, 779–782 (2000). https://doi.org/10.1016/S0360-3199(99)00100-7

    Article  Google Scholar 

  78. X. Wang, R. Chen, C. Chen, and Q. Wang, “Hydrogen storage properties of TixFe + y wt % La and its use in metal hydride hydrogen compressor,” J. Alloys Compd. 425, 291–295 (2006). https://doi.org/10.1016/j.jallcom.2006.01.025

    Article  Google Scholar 

  79. W. Ali, M. Li, P. Gao, C. Wu, Q. Li, X. Lu, and C. Li, “Hydrogenation properties of Ti–Fe–Mn alloy with Cu and Y as additives,” Int. J. Hydrogen Energy 42, 2229–2238 (2017). https://doi.org/10.1016/j.jallcom.2006.01.025

    Article  Google Scholar 

  80. W. Ali, Z. Hao, Z. Li, G. Chen, Z. Wu, X. Lu, and C. Li, “Effects of Cu and Y substitution on hydrogen storage performance of TiFe0.86Mn0.1Y0.1 – xCux,” Int. J. Hydrogen Energy 42, 16620–16631 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.247

    Article  Google Scholar 

  81. C. Gosselin and J. Huot, “First hydrogenation enhancement in TiFe alloys for hydrogen storage doped with yttrium,” Metals 9, 242 (2019). https://doi.org/10.3390/met9020242

    Article  Google Scholar 

  82. T. Zhai, Z. Wei, Z. Yuan, Z. Han, D. Feng, Wang Haiyan, and Y. Zhang, “Influences of La addition on the hydrogen storage performances of TiFe-base alloy,” J. Phys. Chem. Solids 157, 110176 (2021). https://doi.org/10.1016/j.jpcs.2021.110176

    Article  Google Scholar 

  83. C. Li, Y. Lan, X. Wei, W. Zhang, B. Liu, X. Gao, and Z. Yuan, “Improvement of hydrogen absorption and desorption properties of TiFe-based alloys by adding yttrium,” J. Alloys Compd. 927, 166992 (2022). https://doi.org/10.1016/j.jallcom.2022.166992

    Article  Google Scholar 

  84. Z. Han, Z. Yuan, T. Zhai, D. Feng, H. Sun, and Y. Zhang, “Effect of yttrium content on microstructure and hydrogen storage properties of TiFe-based alloy,” Int. J. Hydrogen Energy 48, 676–695 (2023). https://doi.org/10.1016/j.ijhydene.2022.09.227

    Article  Google Scholar 

  85. G. D. Sandrock and P. D. Goodell, “Surface poisoning of LaNi5, FeTi and (Fe,Mn)Ti by O2, CO and H2O,” J. Less-Common Met. 73, 161–168 (1980). https://doi.org/10.1016/0022-5088(80)90355-0

    Article  Google Scholar 

  86. G. Busch, L. Schlapbach, F. Stucki, P. Fischer, and A. F. Andresen, “Hydrogen storage in FeTi: Surface segregation and its catalytic effect on hydrogenation and structural studies by means of neutron diffraction,” Int. J. Hydrogen Energy 4, 29–39 (1979). https://doi.org/10.1016/0360-3199(79)90127-7

    Article  Google Scholar 

  87. Z. Łodziana, “Surface properties of LaNi5 and TiFe — Future opportunities of theoretical research in hydrides,” Front. Energy Res. 9, 719375 (2021). https://doi.org/10.3389/fenrg.2021.719375

    Article  Google Scholar 

  88. I. Okseniuk and D. Shevchenko, “SIMS studies of hydrogen interaction with the TiFe alloy surface: Hydrogen influence on secondary ion yields,” Surf. Sci. 716, 121963 (2022). https://doi.org/10.1016/j.susc.2021.121963

    Article  Google Scholar 

  89. V. Kumar, P. Kumar, K. Takahashi, and P. Sharma, “Hydrogen adsorption studies of TiFe surfaces via 3-d transition metal substitution,” Int. J. Hydrogen Energy 47, 16156–16164 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.138

    Article  Google Scholar 

  90. M. V. Lototsky, M. Williams, V. A. Yartys, Y. V. Klochko, and V. M. Linkov, “Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification,” J. Alloys Compd. 509, 555–S561 (2011). https://doi.org/10.1016/j.jallcom.2010.09.206

    Article  Google Scholar 

  91. M. W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, and Y. Klochko, “Surface modification of TiFe hydrogen storage alloy by metal-organic chemical vapour deposition of palladium,” Int. J. Hydrogen Energy 36, 9743–9750 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.036

    Article  Google Scholar 

  92. D. Zhao, Z. Han, T. Zhai, Z. Yuan, Y. Qi, and Y. Zhang, “Advances in activation property of hydrogen storage for TiFe-based alloy,” Chin. J. Rare Met. 44, 337–351 (2020).

    Google Scholar 

  93. I. Yamashita, N. Tanaka, N. Takeshita, N. Kuriyama, T. Sakai, and I. Uehara, “Hydrogenation characteristics of TiFe1 – xPdx (0.05 ≤ x ≤ 0.30) alloys,” J. Alloys Compd. 253–254, 238–240 (1997). https://doi.org/10.1016/S0925-8388(96)02925-8

    Article  Google Scholar 

  94. L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, and R. Schulz, “Effects of relaxation on hydrogen absorption in Fe–Ti produced by ball-milling,” J. Alloys Compd. 227, 53–57 (1995). https://doi.org/10.1016/0925-8388(95)01623-6

    Article  Google Scholar 

  95. M. Williams, M. V. Lototsky, A. N. Nechaev, and V. M. Linkov, “Method of surface modification of metallic hydride forming materials,” US Patent No. 2011/0009656 A1 (2011). https://www.freepatentsonline.com/y2011/0009656.html

  96. M. Bououdina, D. Fruchart, S. Jacquet, L. Pontonnier, and J. L. Soubeyroux, “Effect of nickel alloying by using ball milling on the hydrogen absorption properties of TiFe,” Int. J. Hydrogen Energy 24, 885–890 (1999). https://doi.org/10.1016/S0360-3199(98)00163-3

    Article  Google Scholar 

  97. B. P. Tarasov, A. A. Arbuzov, S. A. Mozhzhuhin, A. A. Volodin, and P. V. Fursikov, “Composite materials with 2D graphene structures: Applications for hydrogen energetics and catalysis with hydrogen participation,” J. Struct. Chem. 59, 830–838 (2018). https://doi.org/10.1134/S0022476618040121

    Article  Google Scholar 

  98. B. P. Tarasov, A. A. Arbuzov, S. A. Mozhzhuhin, A. A. Volodin, P. V. Fursikov, M. V. Lototskyy, and V. A. Yartys, “Hydrogen storage behavior of magnesium catalyzed by nickel–graphene nanocomposites,” Int. J. Hydrogen Energy 44, 29212–29223 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.033

    Article  Google Scholar 

  99. A. A. Arbuzov, A. A. Volodin, and B. P. Tarasov, “Catalytic synthesis and study of carbon–graphene structures,” Russ. J. Phys. Chem. A 94, 984–989 (2020). https://doi.org/10.1134/S0036024420050039

    Article  Google Scholar 

  100. B. P. Tarasov, A. A. Arbuzov, A. A. Volodin, P. V. Fursikov, S. A. Mozhzhuhin, M. V. Lototskyy, and V. A. Yartys, “Metal hydride – graphene composites for hydrogen based energy storage,” J. Alloys Compd. 896, 162881 (2021). https://doi.org/10.1016/j.jallcom.2021.162881

    Article  Google Scholar 

  101. S.-M. Lee and T.-P. Perng, “Effects of boron and carbon on the hydrogenation properties of TiFe and Ti1.1Fe,” Int. J. Hydrogen Energy 25, 831–836 (2000). https://doi.org/10.1016/S0360-3199(99)00107-X

    Article  Google Scholar 

  102. M. H. Mintz, Z. Hadari, and M. P. Dariel, “Hydrogenation of oxygen-stabilized Ti2MOx (M = Fe, Co, Ni; 0 ≤ x < 0.5) compounds,” J. Less-Common Met. 74, 287–294 (1980). https://doi.org/10.1016/0022-5088(80)90164-2

    Article  Google Scholar 

  103. M. W. Davids, T. Martin, M. Lototskyy, R. Denys, and V. Yartys, “Study of hydrogen storage properties of oxygen modified Ti-based AB2 type metal hydride alloy,” Int. J. Hydrogen Energy 46, 13658–13663 (2021). https://doi.org/10.1016/j.ijhydene.2020.05.215

    Article  Google Scholar 

  104. L. E. R. Vega, D. R. Leiva, R. M. Leal Neto, W. B. Silva, R. A. Silva, T. T. Ishikawa, C. S. Kiminami, and W. J. Botta, “Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere,” Int. J. Hydrogen Energy 43, 2913–2918 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.054

    Article  Google Scholar 

  105. R. B. Falcão, E. D. C. C. Dammann, C. J. Rocha, M. Durazzo, R. U. Ichikawa, L. G. Martinez, W. J. Botta, and R. M. Leal Neto, “An alternative route to produce easily activated nanocrystalline TiFe powder,” Int. J. Hydrogen Energy 43, 16107–16116 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.027

    Article  Google Scholar 

  106. A. Zeaiter, P. Nardin, M. A. Pour Yazdi, and A. Billard, “Outstanding shortening of the activation process stage for a TiFe-based hydrogen storage alloy,” MRS Bull. 112, 132–141 (2019). https://doi.org/10.1016/j.materresbull.2018.12.015

    Article  Google Scholar 

  107. P. Lv, M. N. Guzik, S. Sartori, and J. Huot, “Effect of ball milling and cryomilling on the microstructure and first hydrogenation properties of TiFe+4 wt.% Zr alloy,” J. Mater. Res. Technol. 8, 1828–1834 (2019). https://doi.org/10.1016/j.jmrt.2018.12.013

    Article  Google Scholar 

  108. L. E. R. Vega, D. R. Leiva, R. M. Leal Neto, W. B. Silva, R. A. Silva, T. T. Ishikawa, C. S. Kiminami, and W. J. Botta, “Improved ball milling method for the synthesis of nanocrystalline TiFe compound ready to absorb hydrogen,” Int. J. Hydrogen Energy 45, 2084–2093 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.035

    Article  Google Scholar 

  109. E. I. L. Gómez, K. Edalati, F. J. Antiqueira, D. D. Coimbrão, G. Zepon, D. R. Leiva, T. T. Ishikawa, J. M. Cubero-Sesin, and W. J. Botta, “Synthesis of nanostructured TiFe hydrogen storage material by mechanical alloying via high-pressure torsion,” Adv. Eng. Mater. 22, 2000011 (2020). https://doi.org/10.1002/adem.202000011

    Article  Google Scholar 

  110. J. Barale, E. M. Dematteis, G. Capurso, B. Neuman, S. Deledda, P. Rizzi, F. Cuevas, and M. Baricco, “TiFe0.85Mn0.05 alloy produced at industrial level for a hydrogen storage plant,” Int. J. Hydrogen Energy 47, 29866–29880 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.295

    Article  Google Scholar 

  111. D. M. Dreistadt, T.-T. Le, G. Capurso, J. M. Bellosta von Colbe, A. Santhosh, C. Pistidda, N. Scharnagl, H. Ovri, C. Milanese, P. Jerabek, T. Klassen, and J. Jepsen, “An effective activation method for industrially produced TiFeMn powder for hydrogen storage,” J. Alloys Compd. 919, 165847 (2022). https://doi.org/10.1016/j.jallcom.2022.165847

    Article  Google Scholar 

Download references

Funding

The study was carried out with support by the Russian Science Foundation grant no. 23-13-00418, https://rscf.ru/ project/23-13-00418/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Tarasov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lototsky, M.V., Davids, M.W., Fokin, V.N. et al. Hydrogen-Accumulating Materials Based on Titanium and Iron Alloys (Review). Therm. Eng. 71, 264–279 (2024). https://doi.org/10.1134/S0040601524030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601524030030

Keywords:

Navigation