Skip to main content
Log in

Heat Load Prediction for District Heating Systems with Temporal Convolutional Network and CatBoost

  • DISTRICT HEATING COGENERATION AND HEAT NETWORKS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Accurate heat load prediction is essential for heat production and refined management of district heating systems (DHSs). More advanced technology can often achieve more accurate forecasts. This paper suggests using temporal convolutional network (TCN) and categorical boosting (CatBoost) for heat load prediction. To test the performance of TCN and CatBoost in heat load prediction missions, two additional benchmark models, the decision tree model (DT) and the statistically based multiple linear regression (MLR), are built for comparison. A DHS in Tianjin, China, is used as the study case. Two historical operational characters (day-ahead heat load and hour-ahead heat load) and four meteorological characters (outdoor temperature, relative humidity, wind scale, and air quality index) are selected as input features for the models. The prediction results of every model on the test set are displayed and discussed. The experimental findings indicate that the prediction results of TCN and CatBoost are more accurate than the traditional prediction models, while the modeling process of CatBoost is simpler. Overall, TCN and CatBoost are potential heat load prediction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. M. Li, J. J. Xia, H. Fang, Y. B. Su, and Y. Jiang, “Case study on industrial surplus heat of steel plants for district heating in Northern China,” Energy 102, 397–405 (2016). https://doi.org/10.1016/j.energy.2016.02.105

    Article  Google Scholar 

  2. W. Xiong, Y. Wang, B. V. Mathiesen, H. Lund, and X. Zhang, “Heat roadmap China: New heat strategy to reduce energy consumption towards 2030,” Energy 81, 274–285 (2015). https://doi.org/10.1016/j.energy.2014.12.039

    Article  Google Scholar 

  3. H. Lund, N. Duic, P. A. Østergaard, and B. V. Mathiesen, “Smart energy systems and 4th generation district heating,” Energy 110, 1–4 (2016). https://doi.org/10.1016/j.energy.2016.07.105

    Article  Google Scholar 

  4. H. Lund, P. A. Ostergaard, M. Chang, S. Werner, S. Svendsen, P. Sorknaes, J. E. Thorsen, F. Hvelplund, B. O. G. Mortensen, B. V. Mathiesen, C. Bojesen, N. Duic, X. L. Zhang, and B. Moller, “The status of 4th generation district heating: Research and results,” Energy 164, 147–159 (2018). https://doi.org/10.1016/j.energy.2018.08.206

    Article  Google Scholar 

  5. X. W. Li and J. Wen, “Review of building energy modeling for control and operation,” Renewable Sustainable Energy Rev. 37, 517–537 (2014). https://doi.org/10.1016/j.rser.2014.05.056

    Article  Google Scholar 

  6. J. L. Cao, J. Liu, and X. X. Man, “A united WRF/TRNSYS method for estimating the heating/cooling load for the thousand-meter scale megatall buildings,” Appl. Therm. Eng. 114, 196–210 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.195

    Article  Google Scholar 

  7. S. Idowu, S. Saguna, C. Åhlund, and O. Schelén, “Applied machine learning: Forecasting heat load in district heating system,” Energy Build. 133, 478–488 (2016). https://doi.org/10.1016/j.enbuild.2016.09.068

    Article  Google Scholar 

  8. S. J. Huang and K. R. Shih, “Short-term load forecasting via ARMA model identification including non-Gaussian process considerations,” IEEE Trans. Power Syst. 18, 673–679 (2003). https://doi.org/10.1109/tpwrs.2003.811010

    Article  Google Scholar 

  9. T. T. Fang and R. Lahdelma, “Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system,” Appl. Energy 179, 544–552 (2916). https://doi.org/10.1016/j.apenergy.2016.06.133

  10. E. T. Al-Shammari, A. Keivani, S. Shamshirband, A. Mostafaeipour, P. L. Yee, D. Petkovic, and C. Sudheer, “Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm,” Energy 95, 266–273 (2016). https://doi.org/10.1016/j.energy.2015.11.079

    Article  Google Scholar 

  11. M. Barman, N. B. D. Choudhury, and S. Sutradhar, “A regional hybrid GOA–SVM model based on similar day approach for short-term load forecasting in Assam, India,” Energy 145, 710–720 (2018). https://doi.org/10.1016/j.energy.2017.12.156

    Article  Google Scholar 

  12. T. Wang, T. Y. Ma, D. S. Yan, J. Song, J. S. Hu, G. Y. Zhang, and Y. H. Zhuang, “Prediction of heat load fluctuation based on fuzzy information granulation and support vector machine,” Therm. Sci. 25, 3219–3228 (2021). https://doi.org/10.2298/tsci200529307w

    Article  Google Scholar 

  13. M. Protic, S. Shamshirband, M. H. Anisi, D. Petkovic, D. Mitic, M. Raos, M. Arif, and K. A. Alam, “Appraisal of soft computing methods for short term consumers' heat load prediction in district heating systems,” Energy 82, 697–704 (2015). https://doi.org/10.1016/j.energy.2015.01.079

    Article  Google Scholar 

  14. D. Koschwitz, J. Frisch, and C. van Treeck, “Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX recurrent neural network: A comparative study on district scale,” Energy 165, 134–142 (2018). https://doi.org/10.1016/j.energy.2018.09.068

    Article  Google Scholar 

  15. Y. Lu, Z. Tian, P. Peng, J. Niu, W. Li, and H. Zhang, “GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system,” Energy Build. 190, 49–60 (2019). https://doi.org/10.1016/j.enbuild.2019.02.014

    Article  Google Scholar 

  16. M. B. Simonovic, V. D. Nikolic, E. P. Petrovic, and I. T. Ciric, “Heat load prediction of small district heating system using artificial neural networks,” Therm. Sci. 20, 1355–1365 (2016). https://doi.org/10.2298/TSCI16S5355S

    Article  Google Scholar 

  17. P. N. Xue, Y. Jiang, Z. G. Zhou, X. Chen, X. M. Fang, and J. Liu, “Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms,” Energy 188, 116085 (2019). https://doi.org/10.1016/j.energy.2019.116085

    Article  Google Scholar 

  18. Z. Q. Wei, T. W. Zhang, B. Yue, Y. X. Ding, R. Xiao, R. Z. Wang, and X. Q. Zhai, “Prediction of residential district heating load based on machine learning: A case study,” Energy 231, 120950 (2021). https://doi.org/10.1016/j.energy.2021.120950

    Article  Google Scholar 

  19. A. Moradzadeh, B. Mohammadi-Ivatloo, M. Abapour, A. Anvari-Moghaddam, and S. S. Roy, “Heating and cooling loads forecasting for residential buildings based on hybrid machine learning applications: A comprehensive review and comparative analysis,” IEEE Access 10, 2196–2215 (2022). https://doi.org/10.1109/access.2021.3136091

    Article  Google Scholar 

  20. D. Geysen, O. de Somer, C. Johansson, J. Brage, and D. Vanhoudt, “Operational thermal load forecasting in district heating networks using machine learning and expert advice,” Energy Build. 162, 144–153 (2018). https://doi.org/10.1016/j.enbuild.2017.12.042

    Article  Google Scholar 

  21. M. Dahl, A. Brun, and G. B. Andresen, “Using ensemble weather predictions in district heating operation and load forecasting,” Appl. Energy 193, 455–465 (2017). https://doi.org/10.1016/j.apenergy.2017.02.066

    Article  Google Scholar 

  22. M. J. Gong, J. Wang, Y. Bai, B. Li, and L. Zhang, “Heat load prediction of residential buildings based on discrete wavelet transform and tree-based ensemble learning,” J. Build. Eng. 32, 101455 (2020). https://doi.org/10.1016/j.jobe.2020.101455

    Article  Google Scholar 

  23. A. T. Eseye and M. Lehtonen, “Short-term forecasting of heat demand of buildings for efficient and optimal energy management based on integrated machine learning models,” IEEE Trans. Ind. Inf. 16, 7743–7755 (2020). https://doi.org/10.1109/tii.2020.2970165

    Article  Google Scholar 

  24. N. Izadyar, H. Ghadamian, H. C. Ong, Z. Moghadam, C. W. Tong, and S. Shamshirband, “Appraisal of the support vector machine to forecast residential heating demand for the district heating system based on the monthly overall natural gas consumption,” Energy 93, 1558–1567 (2015). https://doi.org/10.1016/j.energy.2015.10.015

    Article  Google Scholar 

  25. D. Z. Wu, L. K. Foong, and Z. J. Lyu, “Two neural-metaheuristic techniques based on vortex search and backtracking search algorithms for predicting the heating load of residential buildings,” Eng. Comput. 38, 647–660 (2022). https://doi.org/10.1007/s00366-020-01074-z

    Article  Google Scholar 

  26. M. Gong, H. Zhou, Q. Wang, S. Wang, and P. Yang, “District heating systems load forecasting: a deep neural networks model based on similar day approach,” Adv. Build. Energy Res. 14, 372–388 (2020). https://doi.org/10.1080/17512549.2019.1607777

    Article  Google Scholar 

  27. J. Y. Liu, X. Wang, Y. Zhao, B. Dong, K. Lu, and R. R. Wang, “Heating load forecasting for combined heat and power plants via strand-based LSTM,” IEEE Access 8, 33360–33369 (2020). https://doi.org/10.1109/access.2020.2972303

    Article  Google Scholar 

  28. S. Leiprecht, F. Behrens, T. Faber, and M. Finkenrath, “A comprehensive thermal load forecasting analysis based on machine learning algorithms,” Energy Rep. 7, 319–326 (2021). https://doi.org/10.1016/j.egyr.2021.08.140

    Article  Google Scholar 

  29. S. Bai, J. Z. Kolter, and V. J. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling” (2018). https://doi.org/10.48550/arXiv.1803.01271

  30. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. J. A. Gulin, “CatBoost: unbiased boosting with categorical features,” in Proc. 32nd Conf. on Advances in Neural Information Processing Systems (NeurI-PS 2018), Montreal, Canada, Dec. 3–8, 2018, Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran, Red Hook, N.Y., 2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gong.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Gong, M., Sun, J. et al. Heat Load Prediction for District Heating Systems with Temporal Convolutional Network and CatBoost. Therm. Eng. 70, 719–726 (2023). https://doi.org/10.1134/S0040601523090045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601523090045

Keywords:

Navigation