Skip to main content
Log in

The Impact of Operating Parameters on the Performance of a New ORC–VCC Combination for Cogeneration

  • RENEWABLE ENERGY SOURCES, HYDRO POWER ENGINEERING
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

This manuscript presents a new combination based on a thermodynamic conversion, the idea is to combine the Organic Rankine Cycle (ORC) with the Vapor Compression Cycle (VCC). The novelty of the system appears essentially in: the development of new ORC–VCC combination architecture, the lowering of the ORC cycle temperature, the possibility of cold production by the ORC cycle upstream of the pumping phase, preheating of ORC cycle using VCC cycle fluid and new configurations based on the integration of heat recovery systems to improve overall system performance. In addition, each installation mode has several configurations depending on the recovery points that will be integrated later, besides its adaptation to any energy source, where we can use biomass, solar and heat rejects of industry at low temperatures (80‒160°C). This system can produce a cold with negative and positive temperatures. Although, thanks to its architecture, it is also characterized by many combination of selection fluid for the ORC and VCC cycles it is not necessarily to have the same working fluid as the classic systems. The main purpose of this study is to analyze the performance of a new system which combines Rankine-vapor compression cycle for the cogeneration of electricity and refrigeration. Coefficient of performance (COP) will be compared with other cooling systems and power system, such as the system turbo compressor Rankine. The fluids we used in the work are ammonia for the ORC and R600a for the VCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. The first solar thermal collector designed by C.M. Kemp at 1891.

  2. The proposed system can also operate in the trigeneration mode and desalinate sea water.

REFERENCES

  1. P. Mancarella, “MES (multi-energy systems): An overview of concepts and evaluation models,” Energy 65, 1–17 (2014). https://doi.org/10.1016/j.energy.2013.10.041

    Article  Google Scholar 

  2. G. M. Huebner, J. Cooper, and K. Jones, “Domestic energy consumption. What role do comfort habit and knowledge about the heating system play?,” Energy Build. 66, 626–636 (2013). https://doi.org/10.1016/j.enbuild.2013.07.043

    Article  Google Scholar 

  3. A. Fischera, V. Petersb, J. Vávrac, M. Neebeb, and B. Megyesid, “Energy use, climate change and folk psychology: Does sustainability have a chance? Results from a qualitative study in five European countries,” Global Environ. Change 21, 1025–1034 (2011). https://doi.org/10.1016/j.gloenvcha.2011.04.008

    Article  Google Scholar 

  4. Z. Simanaviciene, A. Volochovic, R. Vilke, O. Palekiene, and A. Simanavicius, “Research review of energy savings changing people’s behavior: A case of foreign country,” Procedia - Soc. Behav. Sci. 191, 1996–2001 (2015). https://doi.org/10.1016/j.sbspro.2015.04.315

    Article  Google Scholar 

  5. K.-H. Chang and G. Lin, “Optimal design of hybrid renewable energy systems using simulation optimization,” Simul. Modell. Pract. Theory 52, 40–51 (2015). https://doi.org/10.1016/j.simpat.2014.12.002

    Article  Google Scholar 

  6. S. Abedi, A. Alimardani, G. Gharehpetian, G. Riahy, and S. Hosseinian, “A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems,” Renewable Sustainable Energy Rev. 16, 1577–1587 (2012). https://doi.org/10.1016/j.rser.2011.11.030

    Article  Google Scholar 

  7. L. Olatomiwa, S. Mekhilef, M. Ismail, and M. Moghavvemi, “Energy management strategies in hybrid renewable energy systems: A review,” Renewable Sustainable Energy Rev. 62, 821–835 (2016). https://doi.org/10.1016/j.rser.2016.05.040

    Article  Google Scholar 

  8. J. P. Torreglosa, P. García-Triviño, L. M. Fernández-Ramirez, and F. Jurado, “Control based on techno-economic optimization of renewable hybrid energy system for stand-alone applications,” Expert Syst. Applic. 51, 59–75 (2016). https://doi.org/10.1016/j.eswa.2015.12.038

    Article  Google Scholar 

  9. V. Dash and P. Bajpai, “Power management control strategy for a stand-alone solar photovoltaic-fuel cell–battery hybrid system,” Sustainable Energy Technol. Assess. 9, 68–80 (2015). https://doi.org/10.1016/j.seta.2014.10.001

    Article  Google Scholar 

  10. T. Zhou and B. François, “Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration,” IEEE Trans. Ind. Electron. 58, 95–104 (2011). https://doi.org/10.1109/TIE.2010.2046580

    Article  Google Scholar 

  11. C. Rubio-Maya, J. Uche-Marcuello, A. Martínez-Garcia, and A. A. Bayod-Rújula, “Design optimization of a polygeneration plant fueled by natural gas and renewable energy sources,” Appl. Energy 88, 449–457 (2011). https://doi.org/10.1016/j.apenergy.2010.07.009

    Article  Google Scholar 

  12. J. Wang and T. Mao, “Cost allocation and sensitivity analysis of multi-products from biomass gasification combined cooling heating and power system based on the exergoeconomic methodology,” Energy Convers. Manage. 105, 230–239 (2015). https://doi.org/10.1016/j.enconman.2015.07.081

    Article  Google Scholar 

  13. A. Baghernejad and M. Yaghoubi, “Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm,” Energy Convers. Manage. 52, 2193–2203 (2011). https://doi.org/10.1016/j.enconman.2010.12.019

    Article  Google Scholar 

  14. U. Sahoo, R. Kumar, P. C. Pant, and R. Chauhury, “Scope and sustainability of hybrid solar–biomass power plant with cooling, desalination in polygeneration process in India,” Renewable Sustainable Energy Rev. 51, 304–316 (2015). https://doi.org/10.1016/j.rser.2015.06.004

    Article  Google Scholar 

  15. F. Calise, M. D. d’Accadia, and A. Piacentino, “A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment,” Energy 67, 129–148 (2014). https://doi.org/10.1016/j.energy.2013.12.060

    Article  Google Scholar 

  16. C. Zhou, E. Doroodchi, and B. Moghtaderi, “An in-depth assessment to hybrid solar–geothermal power generation,” Energy Convers. Manage. 74, 88–101 (2013). https://doi.org/10.1016/j.enconman.2013.05.014

    Article  Google Scholar 

  17. A. García-Segura, A. Fernández-García, M. Ariza, F. Sutter, and L. Valenzuela, “Durability studies of solar reflectors: A review,” Renewable Sustainable Energy Rev. 62, 453–467 (2016). https://doi.org/10.1016/j.rser.2016.04.060

    Article  Google Scholar 

  18. J. M. Rodríguez, D. Sánchez, G. S. Martinez, E. G. Bennouna, and B. Ikken, “Techno-economic assessment of thermal energy storage solutions for a 1 MW CSP-ORC power plant,” Sol. Energy 140, 206–218 (2016). https://doi.org/10.1016/j.solener.2016.11.007

    Article  Google Scholar 

  19. J. Sun, R. Wang, H. Hong, and Q. Liu, “An optimized tracking strategy for small-scale double-axis parabolic trough collector,” Appl. Therm. Eng. 112, 1408–1420 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.187

    Article  Google Scholar 

  20. M. Lotker, Barriers to Commerciaization of Large-Scale Solar Electricity: Lessons Learned from LUZ Experience, Report SAND91-7014 (Sandia National Laboratories, Alberqueque, NM, 1991).

  21. T. E. Boukelia, M. S. Mecibah, B. N. Kumar, and K. S. Reddy, “Optimizations selection and feasibility study of solar parabolic trough power plants for Algerian conditions,” Energy Convers. Manage. 101, 450–459 (2015). https://doi.org/10.1016/j.enconman.2015.05.067

    Article  Google Scholar 

  22. Y. Bicer and I. Dincer, “Analysis and performance evaluation of a renewable energy based multigeneration system,” Energy 94, 623–632 (2016). https://doi.org/10.1016/j.energy.2015.10.142

    Article  Google Scholar 

  23. F. Ranjbar, A. Chitsaz, S. Mahmoudi, S. Khalilarya, and M. A. Rosen, “Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell,” Energy Convers. Manage. 87, 318–327 (2014). https://doi.org/10.1016/j.enconman.2014.07.014

    Article  Google Scholar 

  24. A. Chitsaz, A. S. Mehr, and S. M. S. Mahmoudi, “Exergoeconomic analysis of a trigeneration system driven by a solid oxide fuel cell,” Energy Convers. Manage. 106, 921–931 (2015). https://doi.org/10.1016/j.enconman.2015.10.009

    Article  Google Scholar 

  25. W. C. Anderson and T. J. Bruno, “Rapid screening of fluids for chemical stability inorganic Rankine cycle applications,” Ind. Eng. Chem. Res. 44, 5560–5566 (2005). https://doi.org/10.1021/ie050351s

    Article  Google Scholar 

  26. A. Schuster, S. Karellas, and R. Aumann, “Efficiency optimization potential in supercritical Organic Rankine Cycles,” Energy 35, 1033–1039 (2009). https://doi.org/10.1016/j.energy.2009.06.019

    Article  Google Scholar 

  27. H. Chen, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos, “A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power,” Energy 36, 549–555 (2011). https://doi.org/10.1016/j.energy.2010.10.006

    Article  Google Scholar 

  28. B. Saleh, G. Koglbauer, M. Wendland, and J. Fischer, “Working fluids for low-temperature organic Rankine cycles,” Energy 32, 1210–1221 (2007). https://doi.org/10.1016/j.energy.2006.07.001

    Article  Google Scholar 

  29. S. Karellas, A. Schuster, and A.-D. Leontaritis, “Influence of supercritical ORC parameters on plate heat exchanger design,” Appl. Therm. Eng. 33–34, 70–76 (2012). https://doi.org/10.1016/j.applthermaleng.2011.09.013

    Article  Google Scholar 

  30. H. Li, X. Bu, L. Wang, Z. Long, and Y. Lian, “Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy,” Energy Build. 65, 167–172 (2013). https://doi.org/10.1016/j.enbuild.2013.06.012

    Article  Google Scholar 

  31. B. Hu, X. Bu, and W. Ma, “Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy,” Sci. World J. 2014, 742606 (2014). https://doi.org/10.1155/2014/742606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Toujani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toujani, N., Bouaziz, N., Chrigui, M. et al. The Impact of Operating Parameters on the Performance of a New ORC–VCC Combination for Cogeneration. Therm. Eng. 67, 660–672 (2020). https://doi.org/10.1134/S0040601520090086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601520090086

Keywords:

Navigation