Skip to main content
Log in

Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

  • Turbokon Scientific and Production Implementation Company—25 Years
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Fedorov and O. O. Mil’man, Condenser of Steam Turbine Unit (Mos.Gos. Tekhn. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  2. O. O. Mil’man and V. A. Fedorov, Air-Condensation Units (Mos. Energ. Inst., Moscow, 2002) [in Russian].

    Google Scholar 

  3. V. F. Moskvichev, G. A. Ryabov, A. N. Tugov, B. P. Afanas’ev, S. S. Alekseev, and A. S. Lantsev, RF Patent 2333442.

  4. V. F. Moskvichev, G. A. Ryabov, A. N. Tugov, B. P. Afanas’ev, S. S. Alekseev, and A. S. Lantsev, RF Patent 2333447.

  5. V. A. Fedorov, O. O. Mil’man, P. A. Anan’ev, S. N. Dunaev, N. V. Kolesnikov, and B. A. Shifrin, “Thermal–hydraulic processes in air condensers of the steam–gas installations,” Vestn. Mos. Ener. Inst., No. 2, 5–12 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Milman.

Additional information

Original Russian Text © O.O. Milman, A.V. Ptakhin, A.V. Kondratev, B.A. Shifrin, G.G. Yankov, 2016, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milman, O.O., Ptakhin, A.V., Kondratev, A.V. et al. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air. Therm. Eng. 63, 329–335 (2016). https://doi.org/10.1134/S0040601516050074

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601516050074

Keywords

Navigation