Skip to main content
Log in

Nanofiller Effects on the Isothermal Curing Kinetics of Epoxy Resin

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study aims to optimize curing conditions and delays the curing time by mixing nanoparticles of different sizes and types in commercially available epoxy. To do this, the isothermal curing kinetics of epoxy containing TiO2, Al2O3, and graphene nanoplatelets (GNP) at variable ratios determined in the literature are investigated through differential scanning calorimetry (DSC). DSC measurements are then carried out to examine in detail the curing reactions of epoxy–TiO2, epoxy–Al2O3, and epoxy–GNP systems during isothermal curing. The Kamal–Sourour kinetic model best expresses the curing of the epoxy–nanoparticle systems for DSC. The lowest activation energies during curing for Al2O3, TiO2, and GNP are 21.88, 11.12, and 9 kJ/mol, respectively. The most suitable model for transition to a fully cured structure is observed in GNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Mrazova, M., Advanced composite materials of the future in aerospace industry, Incas Bull., 2013, vol. 5, no. 3, pp. 139–150. https://doi.org/10.13111/2066-8201.2013.5.3.14

    Article  Google Scholar 

  2. Singh, N. B., Rai, S., and Agarwal, S., Polymer nanocomposites and Cr (VI) removal from water, Nanosci. Technol., Open Access, 2014, vol. 1, no. 1, pp. 1–10. https://doi.org/10.15226/2374-8141/1/1/00104

    Article  Google Scholar 

  3. Hiscock, D.F. and Bigg, D.M., Long-fiber-reinforced thermoplastic matrix composites by slurry deposition, Polym. Compos., 1989, vol. 10, no. 3, pp. 145–149. https://doi.org/10.1002/pc.750100302

    Article  CAS  Google Scholar 

  4. Das, B., Prasad, K.E., Ramamurty, U., and Rao, C.N.R., Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene, Nanotechnology, 2009, vol. 20, no. 12, article no. 125705. https://doi.org/10.1088/0957-4484/20/12/125705

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Hakim, I.A., Donaldson, S.L., Meyendorf, N.G., and Browning, C.E., Porosity effects on interlaminar fracture behavior in carbon fiber-reinforced polymer composites, Mater. Sci. Appl., 2017, vol. 8, no. 2, pp. 170–187. https://doi.org/10.4236/msa.2017.82011

    Article  CAS  Google Scholar 

  6. Chozhan, C.K., Alagar, M., Sharmila, R.J., and Gnanasundaram, P., Thermo mechanical behaviour of unsaturated polyester toughened epoxy-clay hybrid nanocomposites, J. Polym. Res., 2007, vol. 14, no. 4, pp. 319–328. https://doi.org/10.1007/s10965-007-9114-x

    Article  CAS  Google Scholar 

  7. Yang, C.-C., Chang, F.-C., Wang, Y.-Z., Chan, C.-M., Lin, C.-L., and Chen, W.-Y., Novel nanocomposite of epoxy resin by introduced reactive and nanoporous material, J. Polym. Res., 2007, vol. 14, no. 6, pp. 431–439. https://doi.org/10.1007/s10965-007-9115-9

    Article  CAS  Google Scholar 

  8. Garg, P., Singh, B.P., Kumar, G., Gupta, T., Pandey, I., Seth, R.K., Tandon, R.P., and Mathur, R.B., Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites, J. Polym. Res., 2011, vol. 18, no. 6, pp. 1397–1407. https://doi.org/10.1007/s10965-010-9544-8

    Article  CAS  Google Scholar 

  9. Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B., and Schulte, K., Fracture toughness and failure mechanism of graphene-based epoxy composites, Compos. Sci. Technol., 2014, vol. 97, pp. 90–99. https://doi.org/10.1016/j.compscitech.2014.03.014

    Article  CAS  Google Scholar 

  10. Yi, S., Hilton, H.H., and Ahmad, M.F., A finite element approach for cure simulation of thermosetting matrix composites, Comput. Struct., 1997, vol. 64, nos. 1–4, pp. 383–388.

  11. Zvetkov, V.L., Mechanistic modeling of the epoxy–amine reaction: Model derivations, Thermochim. Acta, 2005, vol. 435, no. 1, pp. 71–84. https://doi.org/10.1016/j.tca.2005.04.025

    Article  CAS  Google Scholar 

  12. Chen, W., Li, P., Yu, Y., and Yang, X., Curing kinetics study of an epoxy resin system for T800 carbon fiber filament wound composites by dynamic and isothermal DSC, J. Appl. Polym. Sci., 2007, vol. 107, no. 3, pp. 1493–1499. https://doi.org/10.1002/app.26861

    Article  CAS  Google Scholar 

  13. Keenan, M.R. Autocatalytic cure kinetics from DSC measurements: zero initial cure rate, J. Appl. Polym. Sci., 1987, vol. 33, no. 5, pp. 1725–1734.

    Article  CAS  Google Scholar 

  14. Montserrat, S. and Málek, J., A kinetic analysis of the curing reaction of an epoxy resin, Thermochim. Acta, 1993, vol. 228, pp. 47–60. https://doi.org/10.1016/0040-6031(93)80273-D

    Article  CAS  Google Scholar 

  15. Chern, C.S. and Poehlein, G.W., A kinetic model for curing reactions of epoxides with amines, Polym. Eng. Sci., 1987, vol. 27, no. 11, pp. 788–795.https://doi.org/10.1002/pen.760271104

    Article  CAS  Google Scholar 

  16. Sourour, S. and Kamal, M.R., Differential scanning calorimetry of epoxy cure: Isothermal cure kinetics, Thermochim. Acta, 1976, vol. 14, nos. 1–2, pp. 41–59. https://doi.org/10.1016/0040-6031(76)80056-1

  17. Borchardt, H.J. and Daniels, F., The application of differential thermal analysis to the study of reaction kinetics, J. Am. Chem. Soc., 1957, vol. 79, no. 1, pp. 41–46. https://doi.org/10.1021/ja01558a009

    Article  CAS  Google Scholar 

  18. Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta., 2011, vol. 520, nos. 1–2, pp. 1–19. https://doi.org/10.1016/j.tca.2011.03.034

  19. Abliz, D., Artys, T., and Ziegmann, G., Influence of model parameter estimation methods and regression algorithms on curing kinetics and rheological modeling, J. Appl. Polym. Sci., 2017, vol. 134, no. 30, article no. 45137.https://doi.org/10.1002/app.45137

    Article  CAS  Google Scholar 

  20. Bilyeu, B., Brostow, W., and Menard, K., Epoxy thermosets and their applications. III. Kinetic equations and models, J. Mater. Educ., 2001, vol. 23, nos. 4–6, pp. 189–204.

  21. Gündoğan, K. and Koksal, D., Investigation of microstructure, thermal, mechanical and antistatic properties of nanoparticle reinforced polymer matrix r-PET recycling yarns, Gümüşhane Üniv J. Sci. Technol., 2020, vol. 10, no. 3, pp. 526–534. https://doi.org/10.17714/gumusfenbil.586869

    Article  Google Scholar 

  22. Katsiropoulos, Ch.V., Pappas, P., Koutroumanis, N., Kokkinos, A., and Galiotis, C., Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets, Compos. Sci. Technol., 2022, vol. 227, article no. 109562. https://doi.org/10.1016/j.compscitech.2022.109562

    Article  CAS  Google Scholar 

  23. Saadatyar, S., Beheshty, M.H., and Sahraeian, R., Mechanical properties of multiwall carbon nanotubes/unidirectional carbon fiber-reinforced epoxy hybrid nanocomposites in transverse and longitudinal fiber directions, Polym. Polym. Compos., 2021, vol. 29, no. 9(S), pp. S74–S84. https://doi.org/10.1177/0967391120986516

  24. Schmidt, D., Shah, D., and Giannelis, E.P., New advances in polymer/layered silicate nanocomposites, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 3, pp. 205–212. https://doi.org/10.1016/S1359-0286(02)00049-9

    Article  ADS  CAS  Google Scholar 

  25. Sahin, Y., Kompozitlerde kullanılan takviye elemanlarının bazı uygulama alanları (Some application areas of reinforcement elements used in composites), in Technological Developments in the Field of Engineering, Istanbul: Güven Plus Grup A.Ş., 2021, pp. 588–625.

    Google Scholar 

  26. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., and Schulte, K., Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study, Compos. Sci. Technol., 2005, vol. 65, nos. 15–16, pp. 2300–2313. https://doi.org/10.1016/j.compscitech.2005.04.021

  27. Njuguna, J., Pielichowski, K., and Alcock, J.R., Epoxy-based fibre reinforced nanocomposites, Adv. Eng. Mater., 2007, vol. 9, no. 10, pp. 835–847. https://doi.org/10.1002/adem.200700118

    Article  Google Scholar 

  28. Javdanitehran, M., Berg, D.C., Duemichen, E., and Ziegmann, G., An iterative approach for isothermal curing kinetics modelling of an epoxy resin system, Thermochim. Acta, 2016, vol. 623, pp. 72–79. https://doi.org/10.1016/j.tca.2015.11.014

    Article  CAS  Google Scholar 

  29. Zhao, L. and Hu, X., Autocatalytic curing kinetics of thermosetting polymers: A new model based on temperature dependent reaction orders, Polymer, 2010, vol. 51, no. 16, pp. 3814–3820. https://doi.org/10.1016/j.polymer.2010.05.056

    Article  CAS  Google Scholar 

  30. Rabearison, N., Jochum, Ch., and Grandidier, J.C., A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite Ly556 epoxy, J. Mater. Sci., 2011, vol. 46, no. 3, pp. 787–796. https://doi.org/10.1007/s10853-010-4815-7

    Article  ADS  CAS  Google Scholar 

  31. Ivankovic, M., Incarnato, L., Kenny, J.M., and Nicolais, L., Curing kinetics and chemorheology of epoxy/anhydride system, J. Appl. Polym. Sci., 2003, vol. 90, no. 11, pp. 3012–3019. https://doi.org/10.1002/app.12976

    Article  CAS  Google Scholar 

  32. Huang, X. and Patham, B., Experimental characterization of a curing thermoset epoxy-anhydride system–isothermal and nonisothermal cure kinetics, J. Appl. Polym. Sci., 2012, vol. 127, no. 3, pp. 1959–1966. https://doi.org/10.1002/app.37567

    Article  CAS  Google Scholar 

  33. Hardis, R., Jessop, J.L.P., Peters, F.E., and Kessler, M.R., Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA, Composites, Part A, 2013, vol. 49, pp. 100–108. https://doi.org/10.1016/j.compositesa.2013.01.021

    Article  CAS  Google Scholar 

  34. Harsch, M., Karger-Kocsis, J., and Holst, M., Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin, Eur. Polym. J., 2007, vol. 43, no. 4, pp. 1168–1178. https://doi.org/10.1016/j.eurpolymj.2007.01.025

    Article  CAS  Google Scholar 

  35. Ghaffari, M., Ehsani, M., Khonakdar, H.A., Assche, G.V., and Terryn, H., The kinetic analysis of isothermal curing reaction of an epoxy resin-glassflake nanocomposite, Thermochim. Acta, 2012, vol. 549, pp. 81–86. https://doi.org/10.1016/j.tca.2012.09.021

    Article  CAS  Google Scholar 

  36. Kim, Y.C., Min, H., Yu, J., Suhr, J., Lee, Y.K., Kim, K.J., Kim, S.H., and Nam, J.-D., Nonlinear and complex cure kinetics of ultra-thin glass fiber epoxy prepreg with highly-loaded silica bead under isothermal and dynamic-heating conditions, Thermochim. Acta, 2016, vol. 644, pp. 28–32. https://doi.org/10.1016/j.tca.2016.08.014

    Article  CAS  Google Scholar 

  37. Kamal, M.R., Thermoset characterization for moldability analysis, Polym. Eng. Sci., 1974, vol. 14, no. 3, pp. 231–239. https://doi.org/10.1002/pen.760140312

    Article  Google Scholar 

  38. Kamal, M.R. and Sourour, S., Kinetics and thermal characterization of thermoset cure, Polym. Eng. Sci., 1973, vol. 13, no. 1, pp. 59–64.https://doi.org/10.1002/pen.760130110

    Article  CAS  Google Scholar 

  39. Hu, J., Shan, J., Zhao, J., and Tong, Z., Isothermal curing kinetics of a flame-retardant epoxy resin containing DOPO investigated by DSC and rheology, Thermochim. Acta, 2016, vol. 632, pp. 56–63. https://doi.org/10.1016/j.tca.2016.02.010

    Article  CAS  Google Scholar 

  40. Nayak, R.K., Dash, A., and Ray, B.C., Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites, Procedia Mater. Sci., 2014, vol. 6, pp. 1359–1364. https://doi.org/10.1016/j.mspro.2014.07.115

    Article  CAS  Google Scholar 

  41. Manjunath, M., Renukappa, N.M., and Suresha, B., Influence of micro and nanofillers on mechanical properties of pultruded unidirectional glass fiber reinforced epoxy composite systems, J. Compos. Mater., 2016, vol. 50, no. 8, pp. 1109–1121. https://doi.org/10.1177/0021998315588623

    Article  ADS  CAS  Google Scholar 

  42. Bazrgari, D., Moztarzadeh, F., Sabbagh-Alvani, A.A., Rasoulianboroujeni, M., Tahriri, M., and Tayebi, L., Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite, Ceram. Int., 2018, vol. 44, no. 1, pp. 1220–1224. https://doi.org/10.1016/j.ceramint.2017.10.068

    Article  CAS  Google Scholar 

  43. Mohanty, A., Srivastava, V.K., and Sastry, P.U., Investigation of mechanical properties of alumina nanoparticle-loaded hybrid glass/carbon-fiber-reinforced epoxy composites, J. Appl. Polym. Sci., 2014, vol. 131, no. 1. https://doi.org/10.1002/app.39749

  44. Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.-Z. and Koratkar, N., Fracture and fatigue in graphene nanocomposites, Small, 2010, vol. 6, no. 2, pp. 179–183. https://doi.org/10.1002/smll.200901480

    Article  PubMed  CAS  Google Scholar 

  45. Knoll, J.B., Riecken, B.T., Kosmann, N., Chandrasekaran, S., Schulte, K., and Fiedler, B., The effect of carbon nanoparticles on the fatigue performance of carbon fiber reinforced epoxy, Composites, Part A, 2014, vol. 67, pp. 233–240. https://doi.org/10.1016/j.compositesa.2014.08.022

    Article  CAS  Google Scholar 

  46. Wang, H., Xian, G., and Li, H., Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite, Composites, Part A, 2015, vol. 76, pp. 172–180. https://doi.org/10.1016/j.compositesa.2015.05.027

    Article  CAS  Google Scholar 

  47. Wang, H., Xian, G., and Li, H., Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite, Composites, Part A, 2015, vol. 76, pp. 172–180. https://doi.org/10.1016/j.compositesa.2015.05.027

    Article  CAS  Google Scholar 

  48. Ismail, R.A., Zaidan, S.A., and Kadhim, R.M., Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes, Appl. Nanosci., 2017, vol. 7, pp. 477–487. https://doi.org/10.1007/s13204-017-0580-0

    Article  ADS  CAS  Google Scholar 

  49. Scientific Diagram Download. https://www.researchgate.net/figure/a-SEM-image-of-pure-TiO2- nanoparticles_fig2_315844063. Cited April 26, 2022.

  50. Wei, J., Atif, R., Vo, T., and Inam, F., Graphene nanoplatelets in epoxy system: dispersion, reaggregation, and mechanical properties of nanocomposites, J. Nanomater., 2015, vol. 3, article no. 561742, pp. 1–12. https://doi.org/10.1155/2015/561742

  51. Wang, H., Xie, G., Ying, Z., Tong, Y., and Zeng, Y., Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films, J. Mater. Sci. Technol., 2015, vol. 31, no. 4, pp. 340–344. https://doi.org/10.1016/j.jmst.2014.09.009

    Article  CAS  Google Scholar 

  52. Duttagupta, S.P., Chen, X.L., Jenekhe, S.A., and Fauchet, P.M., Microhardness of porous silicon films and composites, Solid State Commun., 1997, vol. 101, no. 1, pp. 33–37. https://doi.org/10.1016/S0038-1098(96)00546-7

    Article  ADS  CAS  Google Scholar 

  53. Zheng, Y.-T., Cao, D.-R., Wang, D.-S., and Chen, J.-J., Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC, Composites, Part A, 2007, vol. 38, no. 1, pp. 20–25. https://doi.org/10.1016/j.compositesa.2006.01.023

    Article  CAS  Google Scholar 

  54. Prolongo, S.G., Jiménez-Suárez, A., Moriche, R., and Ureña, A., Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites, Eur. Polym. J., 2014, vol. 53, no. 1, pp. 292–301. https://doi.org/10.1016/j.eurpolymj.2014.01.019

    Article  CAS  Google Scholar 

  55. Bernath, A., Kärger, L., Henning, F., and Böker, A., Accurate cure modeling for isothermal processing of fast curing epoxy resins, Polymers, 2016, vol. 8, no. 11, article no. 390, pp. 1–19. https://doi.org/10.3390/polym8110390

  56. Jansen, K.M.B., Qian, C., Ernst, L.J., Bohm, C., Kessler, A., Preu, H., and Stecher, M., Kinetic characterisation of molding compounds, Proc. 2007 Int. Conf. Therm., Mech. Multi-Phys. Simul., Exp. Microelectron. Microsyst., EuroSime 2007, London, 2007, pp. 1–5. https://doi.org/10.1109/ESIME.2007.360002

  57. Rehman, S., Akram, S., Kanellopoulos, A., Elmarakbi, A., and Karagiannidis, P.G., Development of new graphene/epoxy nanocomposites and study of cure kinetics, thermal and mechanical properties, Thermochim. Acta, 2020, vol. 694, article no. 178785. https://doi.org/10.1016/j.tca.2020.178785

    Article  CAS  Google Scholar 

  58. Monteserín, C., Blanco, M., Aranzabe, E., Aranzabe, A., Laza, J.M., Larrañaga-Varga, A., and Vilas, J.L., Effects of graphene oxide and chemically-reduced graphene oxide on the dynamic mechanical properties of epoxy amine composites, Polymers, 2017, vol. 9, no. 9, article no. 449, pp. 1–16. https://doi.org/10.3390/polym9090449

  59. Ren, R., Xiong, X., Ma, X., Liu, S., Wang, J., Chen, P., and Zeng, Y., Isothermal curing kinetics and mechanism of DGEBA epoxy resin with phthalide-containing aromatic diamine, Thermochim. Acta, 2016, vol. 623, pp. 15–21. https://doi.org/10.1016/j.tca.2015.11.011

    Article  CAS  Google Scholar 

  60. Tezel, G.B., Sarmah, A., Desai, S., Vashisth, A., and Green, M.J., Kinetics of carbon nanotube- loaded epoxy curing: Rheometry, differential scanning calorimetry and radio frequency heating, Carbon, 2021, vol. 175, pp. 1–10. https://doi.org/10.1016/j.carbon.2020.12.090

    Article  CAS  Google Scholar 

  61. Cai, H., Li, P., Sui, G., Yu, Y., Li, G., Yang, X., and Ryu, S., Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC, Thermochim. Acta, 2008, vol. 473, nos. 1–2, pp. 101–105. https://doi.org/10.1016/j.tca.2008.04.012

  62. Traiphol, R., Charoenthai, N., Srikhirin, T., Kerdcharoen, T., Osotchan, T., and Maturos, T., Chain organization and photophysics of conjugated polymer in poor solvents: Aggregates, agglomerates and collapsed coils, Polymer, 2007, vol. 48, no. 3, pp. 813–826. https://doi.org/10.1016/j.polymer.2006.12.003

    Article  CAS  Google Scholar 

  63. Vashisth, A., Ashraf, C., Zhang, W., Bakis, C.E. and van Duin, A.C.T., Accelerated ReaxFF simulations for describing the reactive cross-linking of polymers, J. Phys. Chem. A, 2018, vol. 122, no. 32, pp. 6633–6642. https://doi.org/10.1021/acs.jpca.8b03826

    Article  PubMed  CAS  Google Scholar 

  64. Ehlers, J.-E., Rondan, N.G., Huynh, L.K., Pham, H., Marks, M., and Truong, T.N., Theoretical study on mechanisms of the epoxy-amine curing reaction, Macromolecules, 2007, vol. 40, no. 12, pp. 4370–4377. https://doi.org/10.1021/ma070423m

    Article  ADS  CAS  Google Scholar 

  65. Xie, H., Liu, B., Yuan, Z., Shen, J., and Cheng, R., Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry, J. Polym. Sci., Part B: Polym. Phys., 2004, vol. 42, no. 20, pp. 3701–3712. https://doi.org/10.1002/polb.20220

    Article  ADS  CAS  Google Scholar 

  66. Johnson, R.J. and Pitchumani, R., Characterization of the rheology and cure kinetics of epoxy resin with carbon nanotubes, Front. Heat Mass Transfer, 2010, vol. 1, no. 1, article no. 013007. https://doi.org/10.5098/hmt.v1.1.3007

    Article  Google Scholar 

  67. Terenzi, A., Vedova, C., Lelli, G., Mijovic, C., Torre, L., Valentini, L., and Kenny, J.M., Chemorheological behaviour of double-walled carbon nanotube-epoxy nanocomposites, Compos. Sci. Technol., 2008, vol. 68, no. 8, pp. 1862–1868. https://doi.org/10.1016/j/compscitech.2008.01.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Duzce University Scientific Research Projects (DUBAP) under grant 2021.06.05.1244 project number.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Kabakçı or M. Kılınçel.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabakçı, G., Kılınçel, M. & Tezel, G.B. Nanofiller Effects on the Isothermal Curing Kinetics of Epoxy Resin. Theor Found Chem Eng 57, 1490–1502 (2023). https://doi.org/10.1134/S004057952306009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952306009X

Keywords:

Navigation