Skip to main content
Log in

Adsorption Isotherm, Kinetics and Optimization Study by Box Behnken Design on Removal of Phenol from Coke Wastewater Using Banana Peel (Musa sp.) Biosorbent

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Phenol is a vicious contaminant due to its high toxicity and potential for accumulating in the environment. This ubiquitous organic pollutant gets introduced to the surface water through the effluents of various industries such as industrial coal conversion, fertilizers, petroleum refineries, coke oven plants, pharmaceutical, dye processing, etc. Since presence of even a smaller concentration of phenolic compounds is a serious threat to the living organisms, elimination of this hazardous material from the waste water prior to its discharge is utmost necessary. To mitigate this challenge, numerous techniques have been employed till date, of which, adsorption method has emerged as a promising processing candidate. The method has gained tremendous attention due to the use of natural adsorbents (or biosorbent) specifically derived from the agricultural or household residues. The wide availability, low cost, environmental friendliness and excellent biodegradability of the biosorbent not only enhances the efficacy but also dictates the simplicity and versatility of this technique. The current research deals with the actively removal of phenol concentration from real coke wastewater using activated carbon extracted from banana peel waste as an adsorbent. The maximum phenol removal efficiency from coke wastewater was achieved by batch study with varying parameters at 100 min equilibrium contact time, pH: 7, and adsorbent dosage 0.5 g/30 mL. The parameters such as the adsorbent dose (A: 0.1–1 g), pH (B: 2–10), and temperature (C: 25–50°C) were optimized and statistically analyzed by using Box Behnken design (BBD). The use of activated banana peel biosorbent resulted to achieve maximum phenol removal efficiency of 89.22%. The detailed characterization of biosorbent was corroborated by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and the surface area were analyzed by Brunauer–Emmett Teller (BET). The adsorption data were analyzed and fitted well with the Temkin adsorption isotherm and pseudo-second-order kinetic model. The thermodynamic study indicates that the phenol adsorption on to banana peel biosorbent was an endothermic and physio-sorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Abdelkreem, M., Adsorption of phenol from industrial wastewater using olive mill waste, APCBEE Proc., 2013, vol. 5, pp. 349–357. https://doi.org/10.1016/j.apcbee.2013.05.060

  2. Senturk, H.B., et al., Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study, J. Hazard. Mater., 2009, vol. 172, no. 1, pp. 353–362. https://doi.org/10.1016/j.jhazmat.2009.07.019

    Article  CAS  Google Scholar 

  3. Hong Sun, Ze Zhang, and Limin Song, Study on production of an auxiliary agent of coagulation using waste polystyrene foam and its application to remove phenol from coking plant effluent, Environ. Prog. Sustainable Energy, 2010, vol. 29, no. 4, pp. 494-498. https://doi.org/10.1002/ep.10430

    Article  CAS  Google Scholar 

  4. Li, J., et al., Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation, Desalination, 2016, vol. 380, pp. 43–51. https://doi.org/10.1016/j.desal.2015.11.020

    Article  CAS  Google Scholar 

  5. Kuroki, A., et al., Adsorption mechanism of metal ions on activated carbon, Adsorption, 2019, vol. 25, no. 6, pp. 1251–1258. https://doi.org/10.1007/s10450-019-00069-7

    Article  CAS  Google Scholar 

  6. Rashed, M.N., Adsorption technique for the removal of organic pollutants from water and wastewater, Org. Pollut.: Monit., Risk Treat., 2013, vol. 7, pp. 167–194.

    Google Scholar 

  7. Dai, Y., et al., The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review, Chemosphere, 2019, vol. 223, pp. 12–27. https://doi.org/10.1016/j.chemosphere.2019.01.161

    Article  CAS  Google Scholar 

  8. Gu, S., et al., Clay mineral adsorbents for heavy metal removal from wastewater: A review, Environ. Chem. Lett., 2019, vol. 17, no. 2, pp. 629–654. https://doi.org/10.1007/s10311-018-0813-9

    Article  CAS  Google Scholar 

  9. Sarkar, B., et al., Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review, Sci. Total Environ., 2018, vol. 612, pp. 561–581. https://doi.org/10.1016/j.scitotenv.2017.08.132

    Article  CAS  Google Scholar 

  10. Umeh, C., et al., Adsorption properties of tropical soils from Awka North Anambra Nigeria for lead and cadmium ions from aqueous media, Chem. Afr., 2020, vol. 3, no. 1, pp. 199–210. https://doi.org/10.1007/s42250-019-00109-3

    Article  CAS  Google Scholar 

  11. Vakili, M., et al., Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review, Sep. Purif. Technol., 2019, vol. 224, pp. 373–387. https://doi.org/10.1016/j.seppur.2019.05.040

    Article  CAS  Google Scholar 

  12. Awad, A.M., et al., Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview, J. Mol. Liq., 2020, vol. 301, Article 112335. https://doi.org/10.1016/j.molliq.2019.112335

    Article  CAS  Google Scholar 

  13. Didehban, A., et al., Design and fabrication of core–shell magnetic and non-magnetic supported carbonaceous metal organic framework nanocomposites for adsorption of dye, J. Phys. Chem. Solids, 2021, vol. 152, Article 109930. https://doi.org/10.1016/j.jpcs.2020.109930

    Article  CAS  Google Scholar 

  14. Crini, G., et al., Conventional and non-conventional adsorbents for wastewater treatment, Environ. Chem. Lett., 2019, vol. 17, no. 1, pp. 195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  CAS  Google Scholar 

  15. Carvalho, L.B., Chagas, P.M.B., and Pinto, L.M.A., Caesalpinia ferrea fruits as a biosorbent for the removal of methylene blue dye from an aqueous medium, Water, Air, Soil Pollut., 2018, vol. 229, Article 297. https://doi.org/10.1007/s11270-018-3952-5

    Article  CAS  Google Scholar 

  16. Anastopoulos, I., et al., Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions, J. Mol. Liq., 2019, vol. 295, Article 111684. https://doi.org/10.1016/j.molliq.2019.111684

    Article  CAS  Google Scholar 

  17. Beni, A.A. and Esmaeili, A., Biosorption, an efficient method for removing heavy metals from industrial effluents: A review, Environ. Technol. Innovation, 2020, vol. 17, p. 100503.

    Article  Google Scholar 

  18. Singh, S., et al., Current advancement and future prospect of biosorbents for bioremediation, Sci. Total Environ., 2020, vol. 709, Article 135895. https://doi.org/10.1016/j.scitotenv.2019.135895

    Article  CAS  Google Scholar 

  19. Mangood, A.H., et al., Removal of heavy metals from polluted aqueous media using berry leaf, Int. J. Environ. Anal. Chem., 2021, pp. 1–17. https://doi.org/10.1080/03067319.2021.1928102

  20. Padam, B.S., et al., Banana by-products: An under-utilized renewable food biomass with great potential, J. Food Sci. Technol., 2014, vol. 51, no. 12, pp. 3527–3545. https://doi.org/10.1007/s13197-012-0861-2

    Article  CAS  Google Scholar 

  21. Vilardi, G., Di Palma, L., and Verdone, N., Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models, Chin. J. Chem. Eng., 2018, vol. 26, no. 3, pp. 455–464. https://doi.org/10.1016/j.cjche.2017.06.026

    Article  CAS  Google Scholar 

  22. El-Din, G.A., et al., Study on the use of banana peels for oil spill removal, Alexandria Eng. J., 2018, vol. 57, no. 3, pp. 2061–2068. https://doi.org/10.1016/j.aej.2017.05.020

    Article  Google Scholar 

  23. Silva, C.R., et al., Banana peel as an adsorbent for removing atrazine and ametryne from waters, J. Agric. Food Chem., 2013, vol. 61, no. 10, pp. 2358–2363. https://doi.org/10.1021/jf304742h

    Article  CAS  Google Scholar 

  24. Mondal, N.K. and Kar, S., Potentiality of banana peel for removal of Congo red dye from aqueous solution: Isotherm, kinetics and thermodynamics studies, Appl. Water Sci., 2018, vol. 8, no. 6, pp. 1–12. https://doi.org/10.1007/s13201-018-0811-x

    Article  CAS  Google Scholar 

  25. Mondal, N.K., Natural banana (Musa acuminate) peel: An unconventional adsorbent for removal of fluoride from aqueous solution through batch study. Water Conserv. Sci. Eng., 2017, vol. 1, no. 4, pp. 223–232. https://doi.org/10.1007/s41101-016-0015-x

    Article  Google Scholar 

  26. Achak, M., et al., Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies, J. Hazard. Mater., 2009, vol. 166, no. 1, pp. 117–125. https://doi.org/10.1016/j.jhazmat.2008.11.036

    Article  CAS  Google Scholar 

  27. Akpomie, K.G. and Conradie, J., Banana peel as a biosorbent for the decontamination of water pollutants. A review, Environ. Chem. Lett., 2020, vol. 18, no. 4, pp. 1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    Article  CAS  Google Scholar 

  28. Box, G.E.P. and Behnken, D.W., Some new three level designs for the study of quantitative variables, Technometrics, 1960, vol. 2, no. 4, pp. 455–475.

    Article  Google Scholar 

  29. Srinivasakannan, C. and Bakar, M.Z.A., Production of activated carbon from rubber wood sawdust, Biomass Bioenergy, 2004, vol. 27, no. 1, pp. 89–96. https://doi.org/10.1016/j.biombioe.2003.11.002

    Article  CAS  Google Scholar 

  30. Gupta, H. and Gupta, B., Adsorption of polycyclic aromatic hydrocarbons on banana peel activated carbon, Desalin. Water Treat., 2016, vol. 57, no. 20, pp. 9498–9509. https://doi.org/10.1080/19443994.2015.1029007

    Article  CAS  Google Scholar 

  31. You, K., et al., Simultaneous removal of fluoride, manganese and iron by manganese oxide supported activated alumina: Characterization and optimization via response surface methodology. Water Sci. Technol., 2021, vol. 84, no. 12, pp. 3799–3816. https://doi.org/10.2166/wst.2021.461

    Article  CAS  Google Scholar 

  32. Wong, Y., et al., Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan, J. Appl. Polym. Sci., 2004. 92, no. 3, pp. 1633–1645. https://doi.org/10.1002/app.13714

    Article  CAS  Google Scholar 

  33. Onda, A., Ochi, T., and Yanagisawa, K., Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top. Catal., 2009, vol. 52, nos. 6–7, pp. 801–807. https://doi.org/10.1007/s11244-009-9237-x

    Article  CAS  Google Scholar 

  34. Temesgen, F., Gabbiye, N., and Sahu, O., Biosorption of reactive red dye (RRD) on activated surface of banana and orange peels: Economical alternative for textile effluent, Surf. Interfaces, 2018, vol. 12, pp. 151–159. https://doi.org/10.1016/j.surfin.2018.04.007

    Article  CAS  Google Scholar 

  35. Ingole, R.S., Lataye, D.H., and Dhorabe, P.T., Adsorption of phenol onto banana peels activated carbon, KSCE J. Civ. Eng., 2017, vol. 21, no. 1, pp. 100–110. https://doi.org/10.1007/s12205-016-0101-9

    Article  Google Scholar 

  36. Fu, J., et al., Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis, Chem. Eng. J., 2015, vol. 259, pp. 53–61. https://doi.org/10.1016/j.cej.2014.07.101

    Article  CAS  Google Scholar 

  37. Srivastava, V.C., Mall, I.D., and Mishra, I.M., Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash, Chem. Eng. J., 2006, vol. 117, no. 1, pp. 79–91. https://doi.org/10.1016/j.cej.2005.11.021

    Article  CAS  Google Scholar 

  38. Saini, K., et al., Screening of sugarcane bagasse-derived biochar for phenol adsorption: optimization study using response surface methodology, Int. J. Environ. Sci. Technol., 2021, pp. 1–14. https://doi.org/10.1007/s13762-021-03637-z

  39. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 1918, vol. 40, no. 9, pp. 1361–1403.

    Article  CAS  Google Scholar 

  40. Ho, Y., Huang, C., and Huang, H., Equilibrium sorption isotherm for metal ions on tree fern, Process Biochem., 2002, vol. 37, no. 12, pp. 1421–1430. https://doi.org/10.1016/S0032-9592(02)00036-5

    Article  CAS  Google Scholar 

  41. Freundlich, H., Über die Adsorption in Lösungen, Z. Phys. Chem., 1907, vol. 57, no. 1, pp. 385–470.

    Article  CAS  Google Scholar 

  42. Liu, Y. and Liu, Y.-J., Biosorption isotherms, kinetics and thermodynamics., Sep. Purif. Technol., 2008. vol. 61, no. 3, pp. 229–242. https://doi.org/10.1016/j.seppur.2007.10.002

    Article  CAS  Google Scholar 

  43. Temkin, M., Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim. URSS, 1940, vol. 12, pp. 327–356.

    CAS  Google Scholar 

  44. Inyinbor, A.A., Adekola, F.A., and Olatunji, G.A., Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 2016, vol. 15, pp. 14–27. https://doi.org/10.1016/j.wri.2016.06.001

    Article  Google Scholar 

  45. Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe, K. Sven. Vetenskapsakad. Handl., 1898, vol. 24, no. 4, pp. 1–39.

    Google Scholar 

  46. Ho, Y.S. and McKay, G., Pseudo-second order model for sorption processes, Process Biochem., 1999, vol. 34, no. 5, pp. 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  47. Yadav, L.S., Mishra, B.K., and Kumar, A., Adsorption of phenol from aqueous solutions by bael fruit shell activated carbon: Kinetic, equilibrium, and mass transfer studies, Theor. Found. Chem. Eng., 2019, vol 53, no. 1, pp. 122–131. https://doi.org/10.1134/S0040579519010184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Paul.

Ethics declarations

The authors state that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, L., Paul, K.K. & Jena, S. Adsorption Isotherm, Kinetics and Optimization Study by Box Behnken Design on Removal of Phenol from Coke Wastewater Using Banana Peel (Musa sp.) Biosorbent. Theor Found Chem Eng 56, 1189–1203 (2022). https://doi.org/10.1134/S0040579522330041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522330041

Keywords:

Navigation