Skip to main content
Log in

Numerical Simulation Study of Nozzle Structure of Liquid-Gas Ejector

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The nozzle structure parameters of a liquid-gas ejector have an important effect on the performance of the ejector. In this paper, a numerical simulation model of a liquid-gas ejector was developed. To optimize the gas induction and mixing performance of the ejector, the effect of the nozzle structure on the flow mixing characteristics inside the liquid-gas ejector is investigated. The rationality of the numerical simulation was verified by using the experimental equipment, and the maximum relative error between the experimental and simulated data was 9.72%, which proved the reliability of the numerical simulation. The results show that: conical, folded line, and arc-shaped three different shapes of the nozzle, which the conical nozzle has the best ability to induct gas. The injection coefficient will decrease gradually with the increase of nozzle length, and the injection coefficient will increase with the increase of nozzle outlet straight section length, etc. The research results of this paper can be used to improve the gas induction and mixing performance of the liquid-gas ejector, and play an important guiding role in the design optimization of the ejector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Sagandira, C.R., Siyawamwaya, M., and Watts, P., 3D printing and continuous flow chemistry technology to advance pharmaceutical manufacturing in developing countries, Arab. J. Chem., 2020, vol. 13, no. 11, p. 7886.

    Article  CAS  Google Scholar 

  2. Plutschack, M.B., Pieber, B., Gilmore, K., and Seeberger, P.H., The Hitchhiker’s Guide to Flow Chemistry, Chem. Rev., 2017, vol. 117, no. 18, p. 11796.

    Article  CAS  Google Scholar 

  3. Mehta, H.B., Sagar, K.R., and Chaudhari, C.N., Influence of direct and co-flow pre-injection of a gas phase on gas–liquid two-phase flow through a vertical minichannel, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, p. 116.

    Article  Google Scholar 

  4. Sharma, M., Mohapatra, T., and Ghosh, P., Hydrodynamics, mass and heat transfer study for emerging heterogeneous Fenton process in multiphase fluidized-bed reactor system for wastewater treatment: A review, Chem. Eng. Res. Des., 2021, vol. 171, p. 48.

    Article  CAS  Google Scholar 

  5. Poissonnier, J., Callewaert, A., and Moonen, K., Comparison of jet loop and trickle-bed reactor performance in large-scale exploitation of glucose reductive aminolysis, Catal. Today, 2020, vol. 387, p. 119.

    Article  Google Scholar 

  6. Xu, E., Jiang, X., and Ding, L., Optimizing conical nozzle of venturi ejector in ejector loop reactor using computational fluid dynamics, Korean J. Chem. Eng., 2020, vol. 37, no. 11, p. 1829.

    Article  CAS  Google Scholar 

  7. Luo, P., Tai, Y., Fang, Y., and Wu, H., Mixing times in single and multi-orifice-impinging transverse (MOIT) jet mixers with crossflow, Chin. J. Chem. Eng., 2016, vol. 24, no. 7, p. 825.

    Article  CAS  Google Scholar 

  8. Dolna, O., Mikielewicz, J., and Rolka, P., Analytical studies on deposition and entrainment present in the Venturi nozzle two-phase flow, Int. J. Energy Environ. Eng., 2021, vol. 12, no. 3, p. 487.

    Article  Google Scholar 

  9. Jensen, M.B., Pedersen, P.L., Ottosen, L.D.M., Fauche, J., Smed, M.O.B., and Fischer, K., In silico screening of venturi designs and operational conditions for gas–liquid mass transfer applications, Chem. Eng. J., 2020, vol. 383, Article 123119.

    Article  Google Scholar 

  10. Abiev, R.S. and Sirotkin, A.A., Effect of hydrodynamic conditions on micromixing in impinging-jets microreactors, Theor. Found. Chem. Eng., 2022, vol. 56, no. 1, p. 9.

    Article  CAS  Google Scholar 

  11. Sanaye, S., Emadi, M., and Refahi, A., Thermal and economic modeling and optimization of a novel combined ejector refrigeration cycle, Int. J. Refrig., 2019, vol. 98, p. 480.

    Article  Google Scholar 

  12. Zhao, J., Wei, X., Zou, J., Zhang, Y., Sun, J., and Liu, Z., Research on performance optimization of gas–liquid ejector in multiphase mixed transportation device, J. Mech., 2022, vol. 38, p. 22.

    Article  CAS  Google Scholar 

  13. Schrimpf, M., Esteban, J., Rosler, T., Vorholt, A.J., and Leitner, W., Intensified reactors for gas-liquid-liquid multiphase catalysis: From chemistry to engineering, Chem. Eng. J., 2019, vol. 372, p. 917.

    Article  CAS  Google Scholar 

  14. Haberschill, P., Nehdi, E., Kairouani, L., and Elakhdar, M.A., Experimental study of a two-phase ejector for CO2 transcritical refrigeration system, Arch. Thermodyn., 2021, vol. 42, no. 4, p. 217.

    CAS  Google Scholar 

  15. Falsafioon, M., Aidoun, Z., and Ameur, K., Numerical investigation on the effects of internal flow structure on ejector performance, J. Appl. Fluid Mech., 2019, vol. 12, no. 6, p. 2003.

    Article  Google Scholar 

  16. Zou, H., Yang, T., Tang, M., Tian, C., and Butrymowicz, D., Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors, Energy, 2022, vol. 239, Article 122452.

    Article  CAS  Google Scholar 

  17. Hou, Y., Chen, F., Zhang, S., Chen, W., Zheng, J., Chong, D., and Yan, J., Numerical simulation study on the influence of primary nozzle deviation on the steam ejector performance, Int. J. Therm. Sci., 2022, vol. 179, Article 107633.

    Article  Google Scholar 

  18. Bi, R., Tang, J., Wang, L., Yang, Q., Zuo, M., Chen, C., and Xiang, S., Experimental study on bubble size distribution in gas–liquid reversed jet loop reactor, Int. J. Chem. React. Eng., 2020, vol. 18, no. 1, Article 20190102.

    CAS  Google Scholar 

  19. Wang, X., Xu, S., and Xing, C., Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack, J. Power Sources, 2019, vol. 415, p. 25.

    Article  CAS  Google Scholar 

  20. Poirier, M., Influence of operating conditions on the optimal nozzle exit position for vapor ejector, Appl. Therm. Eng., 2022, vol. 210, Article 118377.

    Article  Google Scholar 

  21. Duan, Z., Li, W., Lin, L., Qu, R., Li, S., and Zhang, J., Investigation on gas induction of liquid–gas ejector in jet loop reactor, Int. J. Chem. React. Eng., 2021, vol. 19, no. 12, p. 1271.

    Article  Google Scholar 

  22. Song, Y., Shentu, Y., Qian, Y., Yin, J., and Wang, D., Experiment and modeling of liquid-phase flow in a Venturi tube using stereoscopic PIV, Nucl. Eng. Technol., 2021, vol. 53, no. 1, p. 79.

    Article  CAS  Google Scholar 

  23. Besagni, G., Cristiani, N., Croci, L., Guedon, G.R., and Inzoli, F., Multi-scale evaluation of ejector performances: The influence of refrigerants and ejector design, Appl. Therm. Eng., 2021, vol. 186, Article 116502.

    Article  CAS  Google Scholar 

  24. Bracconi, M., CFD modeling of multiphase flows with detailed microkinetic description of the surface reactivity, Chem. Eng. Res. Des., 2022, vol. 179, p. 564.

    Article  CAS  Google Scholar 

  25. Sharma, D.V., Patwardhan, A.W., and Ranade, V.V., Estimation of gas induction in jet loop reactors: Influence of nozzle designs, Chem. Eng. Res. Des., 2017, vol. 125, p. 24.

    Article  CAS  Google Scholar 

  26. Zheng, L., Hu, H., Wang, W., Zhang, Y., and Wang, L., Study on flow distribution and structure optimization in a mix chamber and diffuser of a CO2 two-phase ejector, Mathematics, 2022, vol. 10, no. 5, p. 693.

    Article  Google Scholar 

  27. Chen, J., Li, Y., Chen, W., Luo, X., Chen, Y., Yang, Z., and Eames, I.W., Investigation of the ejector nozzle in refrigeration system, Energy, 2018, vol. 157, p. 571.

    Article  CAS  Google Scholar 

  28. Fu, W., Liu, Z., Li, Y., Wu, H., and Tang, Y., Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance, Int. J. Therm. Sci., 2018, vol. 132, p. 509.

    Article  Google Scholar 

  29. Jiang, T.W., Huang, Z.W., Li, J.B., and Zhou, Y.S., Internal flow mechanism of cone–straight nozzle, Pet. Sci., 2021, vol. 18, no. 5, p. 1507. 1.

Download references

ACKNOWLEDGMENTS

This work was supported by a grant from the Natural Science Foundation of Shandong Province (Grant no. ZR2020MB122), Shandong Province Taishan Scholar engineering under special funding Foundations, and the Tackling Key Program of Science and Technology in Shandong Province (no. 2019GSF109009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z.Y., Peng, L.F., Liu, T.L. et al. Numerical Simulation Study of Nozzle Structure of Liquid-Gas Ejector. Theor Found Chem Eng 56, 1204–1214 (2022). https://doi.org/10.1134/S004057952233003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952233003X

Keywords:

Navigation