Skip to main content
Log in

Modeling the Solubility of Carbon Dioxide and 1,1,1,2-Tetrafluoroethane in Ionic Liquids Using the van der Waals and Generic Redlich–Kwong Equations of State

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, we have examined the modeling of gas solubility in twenty room temperature ionic liquids based on the van der Waals and generic Redlich–Kwong equations of state and have also compared the obtained deviations with each other. The selected gases are carbon dioxide (R744) and 1,1,1,2-tetrafluoroethane (R134a). Experimental data represent a high correlation with the present equations of state. It is concluded that the absolute average deviation is less than 1% for each system, which illustrates the high accuracy and efficiency of the mentioned equations of state. Henry’s law constant and some thermodynamic properties such as enthalpy \((\Delta {{H}^{\infty }})\) and entropy \((\Delta {{S}^{\infty }})\) in infinite dilution are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. van der Waals, J.D., On the continuity of the gaseous and liquid states, Doctoral Dissertation, Universiteit Leiden, 1873.

  2. Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 1972, vol. 27, no. 6, pp. 1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4

    Article  CAS  Google Scholar 

  3. Hadj-Kali, A.E. and Alnashef, M.K., Modeling of CO2 solubility in selected imidazolium-based ionic liquids, Chem. Eng. Commun., 2017, vol. 204, p. 205.

    Article  CAS  Google Scholar 

  4. Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Sakhaeinia, H., and Taghikhani, V., Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions, J. Chem. Thermodyn., 2010, vol. 42, p. 787.

    Article  CAS  Google Scholar 

  5. Jalili, A.H., Safavi, M., Ghotbi, C., Mehdizadeh, A., Hosseini-Jenab, M., and Taghikhani, V., Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide, J. Phys. Chem. B, 2012, vol. 116, p. 2758.

    Article  CAS  PubMed  Google Scholar 

  6. Klähn, M. and Seduraman, A., What determines CO2 solubility in ionic liquids? A molecular simulation study, J. Phys. Chem. B, 2015, vol. 119, p. 10066.

    Article  PubMed  CAS  Google Scholar 

  7. Saali, A., Shokouhi, M., Sakhaeinia, H., and Kazemi, N., Thermodynamic consistency test of vapor – liquid equilibrium data of binary systems including carbon dioxide (CO2) and ionic liquids using generic Redlich–Kwong equation of state, J. Solution Chem., 2020, vol. 49, pp. 383–404.

    Article  CAS  Google Scholar 

  8. Soriano, A.N., Doma, B.T., Jr., and Li, M.H.J., Carbon dioxide solubility in some ionic liquids at moderate pressures, J. Taiwan Inst. Chem. Eng., 2009, vol. 40, p. 387.

    Article  CAS  Google Scholar 

  9. Mashayekhi, M., Sakhaeinia, H., and Shokouhi, M., Analysis of thermodynamic consistency behavior of CO2 solubility in some associating solvents, Int. J. Thermophys., 2020, vol. 41, p. 11.

    Article  CAS  Google Scholar 

  10. Sekerci-Cetin, M., Emek, O.B., Ildiz, E.E., and Unlusu, B., Numerical study of the dissolution of carbon dioxide in an ionic liquid, Chem. Eng. Sci., 2016, vol. 147, p. 173.

    Article  CAS  Google Scholar 

  11. Shokouhi, M., Saali, A., Vahidi, M., Zoghi, A.T., and Jalili, A.H., Diffusivity and solubility of carbonyl sulfide and sulfur dioxide in 1-ethyl-3 methylimidazolium bis (trifluoromethyl) sulfonylimide ([emim][Tf2N]): Experimental measurement and modelling, J. Chem. Thermodyn., 2019, vol. 132, p. 411.

    Article  CAS  Google Scholar 

  12. Ren, S., Hou, Y., Wu, W., Liu, Q., Xiao, Y., and Chen, X., Properties of ionic liquids absorbing SO2 and the mechanism of the absorption, J. Phys. Chem. B, 2010, vol. 114, p. 2175.

    Article  CAS  PubMed  Google Scholar 

  13. Yokozeki, A. and Shiflett, M.B., Ammonia solubilities in room-temperature ionic liquids, Ind. Eng. Chem. Res., 2007, vol. 46, p. 1605.

    Article  CAS  Google Scholar 

  14. Hou, Y. and Baltus, R.E., Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method, Ind. Eng. Chem. Res., 2007, vol. 46, p. 8166.

    Article  CAS  Google Scholar 

  15. Kim, Y.S., Choi, W.Y., Jang, J.H., Yoo, K.P., and Lee, C.S., Solubility measurement and prediction of carbon dioxide in ionic liquids, Fluid Phase Equilib., 2005, vol. 228, p. 72.

    Google Scholar 

  16. Shariati, A. and Peters, C.J., High-pressure phase behavior of systems with ionic liquids:  Part IV. Binary system carbon dioxide + 1-hexyl-3-methylimidazolium tetrafluoroborate, J. Supercrit. Fluids, 2004, vol. 29, p. 43.

    Article  CAS  Google Scholar 

  17. Blanchard, L.A., Gu, Z.Y., and Brennecke, J.F., High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B, 2001, vol. 105, p. 2437.

    Article  CAS  Google Scholar 

  18. Anderson, J.L., Dixon, J.K., Maginn, E.J., and Brennecke, J.F., Measurement of SO2 solubility in ionic liquids, J. Phys. Chem. B, 2006, vol. 110, p. 15059.

    Article  CAS  PubMed  Google Scholar 

  19. Yazdi, A., Najafloo, A., and Sakhaeinia, H., A method for thermodynamic modeling of H2S solubility using PC-SAFT equation of state based on a ternary solution of water, methyldiethanolamine and hydrogen sulfide, J. Mol. Liq., 2020, vol. 299, p. 112113.

    Article  CAS  Google Scholar 

  20. Kumełan, J., Perez-Salado Kamps, Á., Tuma, D., and Maurer, G., Solubility of CO2 in the ionic liquid [bmim][PF6], Fluid Phase Equilib., 2005, vol. 48, p. 746.

    Google Scholar 

  21. Kumełan, J., Perez-Salado Kamps, Á., Tuma, D., and Maurer, G., Solubility of H2 in the ionic liquid [bmim][PF6], J. Chem. Eng. Data, 2006, vol. 5, p. 11. https://doi.org/10.1021/je050362s

    Article  CAS  Google Scholar 

  22. Orchilles, A.V., Miguel, P.J., Vercher, E., and Martınez-Andreu, A., Ionic liquids as entrainers in extractive distillation:  Isobaric vapor−liquid equilibria for acetone + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, J. Chem. Eng. Data, 2007, vol. 52, p. 141.

    Article  CAS  Google Scholar 

  23. Marsh, K.N., Boxall, J.A., and Lichtenthaler, R., Room temperature ionic liquids and their mixtures—A review, Fluid Phase Equilib., 2004, vol. 219, p. 93.

    Article  CAS  Google Scholar 

  24. Villagran, C., Deetlefs, M., Pitner, W.R., and Hardacre, C., Quantification of halide in ionic liquids using ion chromatography, J. Anal. Chem., 2004, vol. 76, p. 2118.

    Article  CAS  Google Scholar 

  25. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 1999, vol. 99, p. 2071.

    Article  CAS  PubMed  Google Scholar 

  26. Yokozeki, A. and Shiflett, M.B., Vapor–liquid equilibria of ammonia + ionic liquid mixtures, Appl. Energy, 2007, vol. 84, p. 1258.

    Article  CAS  Google Scholar 

  27. Sakhaeinia, H., Modeling the solubility of hydrogen sulfide in ionic liquids using van der Waals equation of state, Theor. Found. Chem. Eng., 2020, vol. 54, no. 6, pp. 1276–1289. https://doi.org/10.1134/S0040579520060111

    Article  CAS  Google Scholar 

  28. Sakhaeinia, H., Zare-Neyestanak, E., and Shokouhi, M., Evaluation of anion effect on the solubility of hydrogen sulfide in ionic liquids using molecular dynamics simulation, Theor. Found. Chem. Eng., 2020, vol. 54, pp. 949–960.

    Article  CAS  Google Scholar 

  29. Jalili, A.H., Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., and Ahmadi, A.N., Solubility of H2S in ionic liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N], J. Chem. Eng. Data, 2009, vol. 54, p. 1844.

    Article  CAS  Google Scholar 

  30. Nematpour, M., Jalili, A.H., Ghotbi, C., and Rashtchian, D., Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, J. Nat. Gas Sci. Eng., 2016, vol. 30, p. 583.

    Article  CAS  Google Scholar 

  31. Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., Ahmadi, A.N., and Jalili, A.H., Solubility of H2S in ionic liquids [hmim][PF6], [hmim][BF4], and [hmim][Tf2N], J. Chem. Thermodyn., 2009, vol. 41, p. 1052. https://doi.org/10.1016/j.jct.2009.04.014

    Article  CAS  Google Scholar 

  32. Sakhaeinia, H., Jalili, A.H., Taghikhani, V., and Safekordi, A.A., Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonylimide ([emim][Tf2N]), J. Chem. Eng. Data, 2010, vol. 55, p. 5839.

    Article  CAS  Google Scholar 

  33. Yokozeki, A., Solubility of refrigerants in various lubricants, Int. J. Thermophys., 2001, vol. 22, p. 1057.

    Article  CAS  Google Scholar 

  34. Yokozeki, A., Solubility correlation and phase behaviors of carbon dioxide and lubricant oil mixtures, Appl. Energy, 2007, vol. 84, p. 159.

    Article  CAS  Google Scholar 

  35. Shiflett, M.B. and Yokozeki, A. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6], Fluid Phase Equilib., 2010, vol. 294, p. 105.

    Article  CAS  Google Scholar 

  36. Shiflett, M.B. and Yokozeki, A., Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid [bmim][MeSO4], Energy Fuels, 2010, vol. 24, p. 1001.

    Article  CAS  Google Scholar 

  37. Shiflett, M.B. and Yokozeki, A., Chemical absorption of sulfur dioxide in room temperature ionic liquids, Ind. Eng. Chem. Res., 2010, vol. 49, p. 1370.

    Article  CAS  Google Scholar 

  38. Yokozeki, A. and Shiflett, M.B., Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid [hmim][Tf2N], Energy Fuels, 2009, vol. 23, p. 4701.

    Article  CAS  Google Scholar 

  39. Shiflett, M.B. and Yokozeki, A., Phase behavior of carbon dioxide in ionic liquids: [emim][acetate], [emim][trifluoroacetate], and [emim][acetate] + [emim][trifluoroacetate] mixtures, J. Chem. Eng. Data, 2009, vol. 54, p. 108.

    Article  CAS  Google Scholar 

  40. Yokozeki, A., Shiflett, M.B., Junk, C.P., Grieco, L.M., and Foo, T., Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids, J. Phys. Chem. B, 2008, vol. 112, p. 16654.

    Article  CAS  PubMed  Google Scholar 

  41. Yokozeki, A. and Shiflett, M.B., Binary and ternary phase diagrams of benzene, hexafluorobenzene, and ionic liquid [emim][Tf2N] using equations of state, Ind. Eng. Chem. Res., 2008, vol. 47, p. 8389.

    Article  CAS  Google Scholar 

  42. Kumełan, J., Pérez-Salado Kamps, Á., Tuma, D., Yokozeki, A., Shiflett, M.B., and Maurer, G., Solubility of tetrafluoromethane in the ionic liquid [hmim][Tf2N], J. Phys. Chem. B, 2008, vol. 112, p. 3040. https://doi.org/10.1021/jp076737t

    Article  CAS  PubMed  Google Scholar 

  43. Shiflett, M.B. and Yokozeki, A., Binary vapor–liquid and vapor–liquid–liquid equilibria of hydrofluorocarbons (HFC-125 and HFC-143a) and hydrofluoroethers (HFE-125 and HFE-143a) with ionic liquid [emim][Tf2N], J. Chem. Eng. Data, 2008, vol. 53, p. 492. https://doi.org/10.1021/je700588d

    Article  CAS  Google Scholar 

  44. Shiflett, M.B., Kasprzak, D.J., Junk, C.P.A., and Yokozeki, A., Phase behavior of carbon dioxide + [bmim][Ac] mixtures, J. Chem. Thermodyn., 2008, vol. 40, p. 25.

    Article  CAS  Google Scholar 

  45. Shiflett, M.B. and Yokozeki, A., Solubility differences of halocarbon isomers in ionic liquid [emim][Tf2N], J. Chem. Eng. Data, 2007, vol. 52, pp. 2007–2015. https://doi.org/10.1021/je700295e

    Article  CAS  Google Scholar 

  46. Shiflett, M.B. and Yokozeki, A., Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N], J. Phys. Chem. B, 2007, vol. 111, pp. 2070–2074. https://doi.org/10.1021/jp067627+

    Article  CAS  PubMed  Google Scholar 

  47. Shiflett, M.B. and Yokozeki, A., Vapor–liquid–liquid equilibria of pentafluoroethane and ionic liquid [bmim][PF6] mixtures studied with the volumetric method, J. Phys. Chem. B, 2006, vol. 110, p. 14436.

    Article  CAS  PubMed  Google Scholar 

  48. Shiflett, M.B. and Yokozeki, A., Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4], Ind. Eng. Chem. Res., 2005, vol. 44, p. 4453.

    Article  CAS  Google Scholar 

  49. Sakhaeinia, H., Taghikhani, V., Jalili, A.H., Mehdizadeh, A., and Safekordi, A. A., Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions, Fluid Phase Equilib., 2010, vol. 298, p. 303.

    Article  CAS  Google Scholar 

  50. Yazdizadeh, M., Rahmani, F., and Forghani, A.A., Thermodynamic modeling of CO2 solubility in ionic liquid ([Cn-mim] [Tf2N]; n=2, 4, 6, 8) with using Wong–Sandler mixing rule, Peng–Robinson equation of state (EOS) and differential evolution (DE) method, Korean J. Chem. Eng., 2011, vol. 28, p. 46.

    Article  CAS  Google Scholar 

  51. Yim, J.H. and Lim, J.S., CO2 solubility measurement in 1-hexyl-3-methylimidazolium ([HMIM]) cation based ionic liquids, Fluid Phase Equilib., 2013, vol. 352, p. 67.

    Article  CAS  Google Scholar 

  52. Jalili, A.H., Safavi, M., Ghotbi, C., Mehdizadeh, A., Hosseini-Jenab, M., and Taghikhani, V., Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide, J. Phys. Chem. B, 2012, vol. 116, p. 2758.

    Article  CAS  PubMed  Google Scholar 

  53. Shiflett, M.B. and Yokozeki, A., Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids, AIChE J., 2005, vol. 52, p. 1205.

    Article  CAS  Google Scholar 

  54. Macías-Salinas, R., Chávez-Velasco, J.A., Aquino-Olivos, M.A., Mendoza de la Cruz, J.L., and Sánchez-Ochoa, J.C., Accurate modeling of CO2 solubility in ionic liquids using a cubic EoS, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 7593–7601. https://doi.org/10.1021/ie400106g

    Article  CAS  Google Scholar 

  55. Zoubeik, M., Mohamedali, M., and Henni, A., Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids, Fluid Phase Equilib., 2016, vol. 419, p. 67.

    Article  CAS  Google Scholar 

  56. Tagiuri, A., Sumon, K.Z., and Henni, A., Solubility of carbon dioxide in three [Tf2N] ionic liquids, Fluid Phase Equilib., 2014, vol. 380, p. 39.

    Article  CAS  Google Scholar 

  57. Zoubeik, M. and Henni, A., Experimental and thermodynamic study of CO2 solubility in promising [Tf2N and DCN] ionic liquids, Fluid Phase Equilib., 2014, vol. 376, p. 22.

    Article  CAS  Google Scholar 

  58. Shiflett, M.B., Harmer, M.A., Junk, C.P., and Yokozeki, A., Solubility and diffusivity of 1,1,1,2-tetrafluoroethane in room-temperature ionic liquids, Fluid Phase Equilib., 2006, vol. 242, pp. 220–232. https://doi.org/10.1016/j.fluid.2006.01.026

    Article  CAS  Google Scholar 

  59. Ren, W. and Scurto, A.M., Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a), Fluid Phase Equilib., 2009, vol. 286, p. 1.

    Article  CAS  Google Scholar 

  60. Valderrama, J.O. and Robles, P.A., Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids, Ind. Eng. Chem. Res., 2007, vol. 46, p. 1338.

    Article  CAS  Google Scholar 

  61. Valderrama, J.O., Sanga, W.W., and Lazzús, J.A., Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids, Ind. Eng. Chem. Res., 2007, vol. 47, p. 1318.

    Article  CAS  Google Scholar 

  62. Jones, R.G., License, P., Lovelock, K.R.J., and Garcia, I.J.V., Comment on “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids”, Ind. Eng. Chem. Res., 2007, vol. 46, p. 6061.

    Article  CAS  Google Scholar 

  63. Yokozeki, A. and Shiflett, M.B., Gas solubilities in ionic liquids using a generic van der Waals equation of state, J. Supercrit. Fluids, 2010, vol. 55, p. 846.

    Article  CAS  Google Scholar 

  64. Van Ness, H.C. and Abbott, M.M., Classical Thermodynamics of Nonelectrolyte Solutions, New York: McGraw-Hill, 1982.

    Google Scholar 

  65. Anthony, J.L., Anderson, J.L., Maginn, E.J., and Brennecke, J.F., Anion effects on gas solubility in ionic liquids, J. Phys. Chem. B, 2005, vol. 109, pp. 6366–6374. https://doi.org/10.1021/jp046404l

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Sakhaeinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirhossein Saali, Sakhaeinia, H. & Shokouhi, M. Modeling the Solubility of Carbon Dioxide and 1,1,1,2-Tetrafluoroethane in Ionic Liquids Using the van der Waals and Generic Redlich–Kwong Equations of State. Theor Found Chem Eng 55, 129–139 (2021). https://doi.org/10.1134/S0040579521010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521010127

Keywords:

Navigation