Skip to main content
Log in

Preparation and Characterization of Nanosized Pomegranate Peel-Based Activated Carbon for Application in Pyridine Removal from Aqueous Solution

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Effect of activating procedure on the physic-chemical properties and adsorption performance of activated carbon was investigated. For this, pomegranate peel was used as biomass and carbonized to prepare base material. Activating process was carried out using traditional (sulfuric acid as activating agent) and green way methods (water as activating agent). SEM, FTIR and particle size analysis were conducted to characterize as-prepared biosorbents. The adsorption capacity of carbonized pomegranate peel, acid-activated carbon and water-activated carbon were measured through separation of pyridine from aqueous solution. The effect of initial concentration and solution pH was also studied for all samples. Results depicted that water activated carbon achieved maximum value of adsorption capacity among three adsorbents at the other equal conditions. Additionally, kinetic studies were conducted to find predicting model for each adsorbents. According to the results, pseudo second order model can be applied for all three kinds of biosorbents at certain adsorption conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Zalat, O.A. and Elsayed, M.A., A study on microwave removal of pyridine from wastewater, J. Environ. Chem. Eng., 2013, vol. 1, p. 137.

    Article  CAS  Google Scholar 

  2. Kirk-Othmer Encyclopedia of Chemical Technology, Kroschwitz, J.I., Ed., New York: Wiley, 1987, 5th ed.

    Google Scholar 

  3. Lataye, D.H., Mishra, I.M., and Mall, I.D., Removal of pyridine from aqueous solution by adsorption on bagasse fly ash, Ind. Eng. Chem. Res., 2006, vol. 45, p. 3934.

    Article  CAS  Google Scholar 

  4. Satyanarayana, T., Johri, B.N., and Prakash, A., Microorganisms in Environmental Management: Microbes and Environment, New York: Springer, 2012.

    Book  Google Scholar 

  5. Padoley, K.V., Rajvaidya, A.S., Subbarao, T.V., and Pandey, R.A., Biodegradation of pyridine in a completely mixed activated sludge process, Bioresour. Technol., 2006, vol. 97, no. 10, p. 1225.

    Article  CAS  Google Scholar 

  6. Sandhya, S., Urn, T.S., Stynarayana, S., and Kaul, S.N., Biodegradation of pyridine from pharmaceutical wastewater, Int. J. Environ. Stud., 2002, vol. 5, p. 1097.

    Google Scholar 

  7. Rhee, S.K., Lee, G.M., and Lee, S.T., Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp., Appl. Microbiol. Biotechnol., 1996, vol. 44, no. 6, p. 816.

    CAS  PubMed  Google Scholar 

  8. Lee, S.T., Rhee, S.K., and Lee, G.M., Biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp., Appl. Microbiol. Biotechnol., 1994, vol. 41, no. 6, p. 652.

    Article  CAS  Google Scholar 

  9. Stem, M., Heinzle, E., Kut, G.M., and Hungerbühler, K., Removal of substituted pyridines by combined ozonation/fluidized bed biofilm treatment, Water Sci. Technol., 1997, vol. 35, no. 4, p. 329. https://doi.org/10.1016/S0273-1223(97)00042-5

    Article  Google Scholar 

  10. Tiana, F., Zhu, R., and Ouyang, F., Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3, J. Environ. Sci., 2013, vol. 25, no.11, p. 2299.

    Article  Google Scholar 

  11. Akita, S. and Takeuchi, H., Sorption equilibria of pyridine derivatives in aqueous solution on porous resins and ion exchange resins, J. Chem. Eng. Jpn., 1993, vol. 26, no. 3, p. 237.

    Article  CAS  Google Scholar 

  12. Mohan, D., Singh, K.P., Sinha, S., and Gosh, D., Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials, Carbon, 2004, vol. 42, p. 2409.

    Article  CAS  Google Scholar 

  13. Zhao, B., Liang, H.D., Han, D.M., Qiu, D., and Chen, S.Q., Adsorption of pyridine from aqueous solution by surface treated carbon nanotubes, Sep. Sci. Technol., 2007, vol. 42, p. 3419.

    Article  CAS  Google Scholar 

  14. Bai, Y., Sun, Q., Xing, R., Wen, D., and Tang, X., Removal of pyridine and quinoline by bio-zeolite composed of mixed degrading bacteria and modified zeolite, J. Hazard. Mater., 2010, vol. 181, p. 916.

    Article  CAS  Google Scholar 

  15. Mahramanlioglu, M., Ozgen, O., Cinarli, A., and Kizilcikli, I., Adsorption of pyridine by acid treated spent bleaching earth, Asian J. Chem., 2010, vol. 22, no.2, p. 1428.

    CAS  Google Scholar 

  16. Gosu, V., Ram Gurjar, B., Surampalli, R.Y., and Zhang, T.C., Treatment of pyridine-bearing wastewater by Nano Zero-valent iron supported on activated carbon derived from agricultural waste, Desalin. Water Treat., 2016, vol. 57, p. 6250.

    Article  CAS  Google Scholar 

  17. Lataye, D.H., Mishra, I.M., and Mall, I.D., Multicomponent sorption of pyridine and its derivatives from aqueous solution onto rice husk ash and granular activated carbon, Pract. Period. Hazard., Toxic, Radioact. Waste Manage., 2009, vol. 13, p. 218.

    Article  CAS  Google Scholar 

  18. Zhu, Q., Moggridge, G.D., Ainte, M., Mantle, M.D., Gladden, L.F., and D’Agostino, C., Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 1: Adsorption performance and PFG-NMR studies, Chem. Eng. J., 2016, vol. 306, p. 67.

    Article  CAS  Google Scholar 

  19. Zhang, C., Chen, L., Wang, T.J., Su, C.L., and Jin, Y., Synthesis and properties of a magnetic core–shell composite nano-adsorbent for fluoride removal from drinking water, Appl. Surf. Sci., 2014, vol. 317, p. 552.

    Article  CAS  Google Scholar 

  20. Rao, R.A.K. and Rehman, F., Adsorption of heavy metal ions on pomegranate (Punicagranatum) peel: Removal and recovery of Cr(VI) ions from a multi-metal ion system, Adsorpt. Sci. Technol., 2010, vol. 28, no. 3, p. 195.

    Article  CAS  Google Scholar 

  21. Kumar, A. and Kumar, V., Kinetic, equilibrium isotherm and thermodynamic study for removal of cadmium from wastewater by using modified pomegranate peel, J. Chem. Pharm. Res., 2015, vol. 7, no. 1, p. 685.

    CAS  Google Scholar 

  22. Shouman, M.A. and Khedr, S.A.A., Removal of cationic dye from aqueous solutions by modified acid-treated pomegranate peels (PUNICA GRANATUM): Equilibrium and kinetic studies, Asian J. Appl. Sci., 2015, vol. 3, no. 4, p. 574.

    Google Scholar 

  23. Rohani Moghadam, M., Nasirizadeh, N., Dashti, Z., and Babanezhad, E., Removal of Fe(II) from aqueous solution using pomegranate peel carbon: Equilibrium and kinetic studies, Int. J. Ind. Chem., 2013, vol. 4, p. 19.

    Article  Google Scholar 

  24. Hashim, A.Z.M., Sufian, S., and Shaharun, M.S., Green functionalization of activated carbon for dye removal application, Appl. Mech. Mater., 2015, vol. 755, p. 719.

    Article  Google Scholar 

  25. Fisal, A., Wan Daud, W.M.A., Ahmad, M.A., and Radzi, R., The effects of acid leaching on porosity and surface functional groups of cocoa (The obroma cacao)-shell based activated carbon, Chem. Eng. Res. Des., 2013, vol. 90, p. 1.

    Google Scholar 

  26. Ramdane, N., Bouchelta, C., Marsa, Z., Medjram, M.S., and Magrib, P., Production of activated carbon from apple waste prepared under N2/microwave radiations, J. Chem. Pharm. Res., 2016, vol. 8, no. 1, p. 617.

    CAS  Google Scholar 

  27. Saka, C., BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2, J. Anal. Appl. Pyrolysis, 2012, vol. 95, p. 21.

    Article  CAS  Google Scholar 

  28. Deng, H., Zhang, G., Xu, X., Tao, G., and Dai, J., Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid chemical activation, J. Hazard. Mater., 2010, vol. 182, p. 217.

    Article  CAS  Google Scholar 

  29. Guigue, J., Mathieu, O., Lévêque, J., Mounier, S, Laffont, R., Maron, P.A., Navarro, N., Chateau, C., Amiotte-Suchet, P., and Lucas, Y., A comparison of extraction procedures for water-extractable organic matter in soils, Eur. J. Soil Sci., 2014, vol. 65, p. 520.

    Article  CAS  Google Scholar 

  30. Khademzadeh Moghaddam, H. and Pakizeh, M., Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent, J. Ind. Eng. Chem., 2015, vol. 21, p. 221.

    Article  Google Scholar 

  31. Alonso-Davila, P., Torres-Rivera, O.L., Leyva-Ramos, R., and Ocampo-Perez, R., Removal of pyridine from aqueous solution by adsorption on an activated carbon cloth, Clean: Soil, Air, Water, 2012, vol. 40, no. 1, p. 45.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Namvar-Mahboub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdieh Namvar-Mahboub, Ahsani, F. & Ansari, S. Preparation and Characterization of Nanosized Pomegranate Peel-Based Activated Carbon for Application in Pyridine Removal from Aqueous Solution. Theor Found Chem Eng 54, 940–948 (2020). https://doi.org/10.1134/S0040579520050371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520050371

Keywords:

Navigation