Skip to main content
Log in

Dehydration of diethylene glycol by pervaporation using HybSi ceramic membranes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The pervaporation dehydration of diethylene glycol using ceramic tubular membranes with a hydrophilic selective layer formed from HybSi material was experimentally studied. The experiments were carried out over the process temperature range of 70–90°C at pressures in the permeate part of membrane unit in the range of 5–30 mm Hg and at diethylene glycol concentrations in the range of 93.5–99.8 wt %. Dependences of the membrane surface area required for the dehydration of diethylene glycol over a predetermined range of concentrations on productivity, process temperature, and vacuum were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonquieres, A., Clement, R., Lochon, P., Neel, J., Dresch, M., and Chretien, B., Industrial state-of-the-art of pervaporation and vapor permeation in the western countries, J. Membr. Sci., 2002, vol. 206, p. 87.

    Article  CAS  Google Scholar 

  2. Myasnikov, S.K., Uteshinsky, A.D., and Kulov, N.N., Hybrid of pervaporation and condensation-distillation crystallization: a new combined separation technology, Theor. Found. Chem. Eng., 2003, vol. 37, p. 527.

    Article  CAS  Google Scholar 

  3. Castricum, H.L., Kreiter, R., van Veen, H.M., Blank, D.H.A., Vente, J.F., and Elshof, J.E., High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability, J. Membr. Sci., 2008, vol. 324, p. 111.

    Article  CAS  Google Scholar 

  4. Castricum, H.L., Sah, A., Kreiter, R., Blank, D.H.A., Vente, J.F., and Elshof, J.E., Hybrid ceramic nanosieves: stabilizing nanopores with organic links, Chem. Commun., 2008, vol. 9, p. 1103.

    Article  Google Scholar 

  5. van Veen, H.M., Rietkerk, M.D.A., Shanahan, D.P., van Tuel, M.M.A., Kreiter, R., Castricum, H.L., Elshof, J.E., and Vente, J.F., Pushing membrane stability boundaries with HybSi pervaporation membranes, J. Membr. Sci., 2011, vol. 380, p. 124.

    Google Scholar 

  6. Agirre, I., Guemez, M.B., van Veen, H.M., Motelica, A., Vente, J.F., and Arias, P.L., Acetalization reaction of ethanol with butyraldehyde coupled with pervaporation, semi-batch pervaporation studies and resistance of HybSi membranes to catalyst impacts, J. Membr. Sci., 2011, vol. 371, p. 179.

    Article  CAS  Google Scholar 

  7. Yim, D.W. and Kong, S.-H., Pervaporative dehydration of diethylene glycol through a hollow fiber membrane, J. Appl. Polym. Sci., 2013, vol. 129, p. 499.

    Article  CAS  Google Scholar 

  8. Bekirov, T.M. and Lanchakov, G.A., Tekhnologiya obrabotki gaza i kondensata (Gas and Condensate Processing Technology), Moscow: Nedra, 1999.

    Google Scholar 

  9. Zhdanova, N.V. and Khalif, A.L., Osushka uglevodorodnykh gazov (Drying of Hydrocarbon Gases), Moscow: Khimiya, 1984.

    Google Scholar 

  10. Farakhov, M.I., Klinov, A.V., Velterop, F.M., Maryakhina, V.A., Akberov, R.R., Maryakhin, N.N., Malygin, A.V., and Fazlyev, A.R., Experimental setup for study of pervaporation through HybSi ceramic membranes, Vestn. Kazan. Tekhnol. Univ., 2012, no. 11, p. 166.

    Google Scholar 

  11. Nagy, E., Coupled effect of the membrane properties and concentration polarization in pervaporation: unified mass transport model, Sep. Purif. Technol., 2010, vol. 64, p. 194.

    Article  Google Scholar 

  12. Vane, L.M., Alvarez, F.R., and Giroux, E.L., Reduction of concentration polarization in pervaporation using vibrating membrane module, J. Membr. Sci., 1999, vol. 153, p. 233.

    Article  CAS  Google Scholar 

  13. Mah, S.-K., Chai, S.-P., and Wu, T.Y., Dehydration of glycerin solution using pervaporation: HybSi and poly-dimethylsiloxane membranes, J. Membr. Sci., 2014, vol. 450, p. 440.

    Article  CAS  Google Scholar 

  14. Dyment, O.N., Kazanskii, K.S., and Miroshnikov, A.M., Glikoli i drugie proizvodnye okisei etilena i propilena (Glycols and other Derivatives of Ethylene and Propylene Oxides), Moscow: Khimiya, 1976.

    Google Scholar 

  15. Hwang, S.-T. and Kammermeyer, K., Membranes in Separations, New York: Wiley, 1975.

    Google Scholar 

  16. Wang, M.-H., Soriano, A.N., Caparanga, A.R., and Li, M.-H., Mutual diffusion coefficients of aqueous solutions of some glycols, Fluid Phase Equilib., 2009, vol. 285, p. 44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Akberov.

Additional information

Original Russian Text © R.R. Akberov, A.R. Fazlyev, A.V. Klinov, A.V. Malygin, M.I. Farakhov, V.A. Maryakhina, S.M. Kirichenko, 2014, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2014, Vol. 48, No. 5, pp. 594–600.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akberov, R.R., Fazlyev, A.R., Klinov, A.V. et al. Dehydration of diethylene glycol by pervaporation using HybSi ceramic membranes. Theor Found Chem Eng 48, 650–655 (2014). https://doi.org/10.1134/S0040579514030014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579514030014

Keywords

Navigation