Skip to main content
Log in

Scalar products of Bethe vectors in the generalized algebraic Bethe ansatz

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an \(XYZ\) spin chain within the framework of the generalized algebraic Bethe ansatz. We study scalar products of the transfer matrix eigenvectors and arbitrary Bethe vectors. In the particular case of free fermions, we obtain explicit expressions for the scalar products with different number of parameters in two Bethe vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The question of the existence of solutions of inhomogeneous systems does not arise because scalar products with imbalance \(\varkappa=\pm1\) obviously exist.

References

  1. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method. I,” Theoret. and Math. Phys., 40, 688–706 (1979).

    Article  ADS  Google Scholar 

  2. L. A. Takhtadzhyan and L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg \(XYZ\) model,” Russian Math. Surveys, 34, 11–68 (1979).

    Article  ADS  Google Scholar 

  3. L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models,” in: Symmétries quantiques [Quantum Symmetries] (Proceedings of the Les Houches Summer School, Session LXIV, Les Houches, France, August 1 – September 8, 1995, A. Connes, K. Gawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998), pp. 149–219; arXiv: hep-th/9605187.

    Google Scholar 

  4. A. G. Izergin and V. E. Korepin, “The quantum inverse scattering method approach to correlation functions,” Commun. Math. Phys., 94, 67–92 (1984).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. V. E. Korepin, “Dual field formulation of quantum integrable models,” Commun. Math. Phys., 113, 177–190 (1987).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. T. Kojima, V. E. Korepin, and N. A. Slavnov, “Determinant representation for dynamical correlation function of the quantum nonlinear Schrödinger equation,” Commun. Math. Phys., 188, 657–689 (1997); arXiv: hep-th/9611216.

    Article  MATH  ADS  Google Scholar 

  7. M. Jimbo, K. Miki, T. Miwa, and A. Nakayashiki, “Correlation functions of the \(XXZ\) model for \(\Delta<-1\),” Phys. Lett. A, 168, 256–263 (1992); arXiv: hep-th/9205055.

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Kitanine, J. M. Maillet, and V. Terras, “Correlation functions of the \(XXZ\) Heisenberg spin-\(1/2\) chain in a magnetic field,” Nucl. Phys. B, 567, 554–582 (2000); arXiv: math-ph/9907019.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. F. Göhmann, A. Klümper, and A. Seel, “Integral representations for correlation functions of the \(XXZ\) chain at finite temperature,” J. Phys. A: Math. Gen., 37, 7625–7652 (2004); arXiv: hep-th/0405089.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. N. Kitanine, J. M. Maillet, N. A. Slavnov, and V. Terras, “Master equation for spin-spin correlation functions of the \(XXZ\) chain,” Nucl. Phys. B, 712, 600–622 (2005); arXiv: hep-th/0406190; N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions,” J. Stat. Mech., 2009, P04003, 66 pp. (2009), arXiv: 0808.0227; “A form factor approach to the asymptotic behavior of correlation functions,” 2011, P12010, 28 pp. (2011), arXiv: 1110.0803.; “Form factor approach to dynamical correlation functions in critical models,” 2012, P09001, 33 pp. (2012), arXiv: 1206.2630.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. J. S. Caux and J. M. Maillet, “Computation of dynamical correlation functions of Heisenberg chains in a magnetic field,” Phys. Rev. Lett., 95, 077201, 3 pp. (2005); arXiv: cond-mat/0502365.

    Article  ADS  Google Scholar 

  12. R. G. Pereira, J. Sirker, J. S. Caux, R. Hagemans, J. M. Maillet, S. R. White, and I. Affleck, “Dynamical spin structure factor for the anisotropic spin-\(1/2\) Heisenberg chain,” Phys. Rev. Lett., 96, 257202, 4 pp. (2006), arXiv: cond-mat/0603681; “Dynamical structure factor at small \(q\) for the \(XXZ\) spin-\(1/2\) chain,” J. Stat. Mech., 2007, P08022, 64 pp. (2007), arXiv: 0706.4327.

    Article  MATH  ADS  Google Scholar 

  13. J. S. Caux, P. Calabrese, and N. A. Slavnov, “One-particle dynamical correlations in the one- dimensional Bose gas,” J. Stat. Mech., 2007, P01008, 21 pp. (2007); arXiv: cond-mat/0611321.

    Article  Google Scholar 

  14. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  15. N. A. Slavnov, Algebraic Bethe Ansatz and Correlation Functions: An Advanced Course, World Sci., Singapore (2022).

    Book  MATH  Google Scholar 

  16. W. Heisenberg, “Zur Theorie des Ferromagnetismus,” Z. Phys., 49, 619–636 (1928).

    Article  MATH  ADS  Google Scholar 

  17. B. Sutherland, “Two-dimensional hydrogen bonded crystals without the ice rule,” J. Math. Phys., 11, 3183–3186 (1970).

    Article  ADS  Google Scholar 

  18. C. Fan and F. Y. Wu, “General lattice model of phase transitions,” Phys. Rev. B, 2, 723–733 (1970).

    Article  ADS  Google Scholar 

  19. R. J. Baxter, “Eight-vertex model in lattice statistics,” Phys. Rev. Lett., 26, 832–833 (1971).

    Article  ADS  Google Scholar 

  20. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London (1982).

    MATH  Google Scholar 

  21. S. Belliard and N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation,” JHEP, 10, 103, 16 pp. (2019); arXiv: 1908.00032.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. N. Slavnov, A. Zabrodin, and A. Zotov, “Scalar products of Bethe vectors in the 8-vertex model,” JHEP, 06, 123, 53 pp. (2020); arXiv: 2005.11224.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. N. Kitanine, J.-M. Maillet, and V. Terras, “Form factors of the XXZ Heisenberg spin-\(1/2\) finite chain,” Nucl. Phys. B, 554, 647–678 (1999); arXiv: math-ph/9807020.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. F. Göhmann and V. E. Korepin, “Solution of the quantum inverse problem,” J. Phys. A: Math. Gen., 33, 1199–1220 (2000); arXiv: hep-th/9910253.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. J. M. Maillet and V. Terras, “On the quantum inverse scattering problem,” Nucl. Phys. B, 575, 627–644 (2000); arXiv: hep-th/9911030.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. G. Kulkarni and N. A. Slavnov, “Action of the monodromy matrix entries in the generalized algebraic Bethe ansatz,” Theoret. and Math. Phys., to appear; arXiv: 2303.02439.

    Google Scholar 

  27. E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Ann. Phys., 16, 407–466 (1961).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. B. M. McCoy, “Spin correlation functions of the \(X\)\(Y\) model,” Phys. Rev., 173, 531–541 (1968).

    Article  ADS  Google Scholar 

  29. Th. Niemeijer, “Some exact calculations on a chain of spins 1/2,” Physica, 36, 377–419 (1967).

    Article  ADS  Google Scholar 

  30. S. Katsura, T. Horiguchi, and M. Suzuki, “Dynamical properties of the isotropic \(XY\) model,” Physica, 46, 67–86 (1970).

    Article  ADS  Google Scholar 

  31. J. H. H. Perk and H. W. Capel, “Time-dependent \(xx\)-correlation functions in the one dimensional \(XY\)-model,” Phys. A, 89, 265–303 (1977).

    Article  Google Scholar 

  32. H. G. Vaidya and C. A. Tracy, “Crossover scaling function for the one-dimensional \(XY\) model at zero temperature,” Phys. Lett. A, 68, 378–380 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Tonegawa, “Transverse spin correlation function of the one-dimensional spin-\(1/2\) \(XY\) model,” Solid State Comm., 40, 983–986 (1981).

    Article  ADS  Google Scholar 

  34. M. D’lorio, U. Glaus, and E. Stoll, “Transverse spin dynamics of a one-dimensional \(XY\) system: A fit to spin-spin relaxation data,” Solid State Commun., 47, 313–315 (1983).

    Article  ADS  Google Scholar 

  35. A. G. Izergin, N. A. Kitanin, and N. A. Slavnov, “On correlation functions of the \(XY\) model,” J. Math. Sci. (N. Y.), 88, 224–232 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Fabricius and B. M. McCoy, “New developments in the eight vertex model,” J. Stat. Phys., 111, 323–337 (2003), arXiv: cond-mat/0207177; “New developments in the eight vertex model II. Chains of odd length,” test, 120, 37–70 (2005), arXiv: cond-mat/0410113; “Functional equations and fusion matrices for the eight-vertex model,” Publ. Res. Inst. Math. Sci., 40, 905–932 (2004); arXiv: cond-mat/0311122.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Fabricius and B. M. McCoy, “An elliptic current operator for the 8 vertex model,” J. Phys. A: Math. Gen., 39, 14869–14886 (2006); arXiv: cond-mat/0606190.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. T. Deguchi, “The 8V CSOS model and the \(sl_2\) loop algebra symmetry of the six-vertex model at roots of unity,” Internat. J. Modern Phys. B, 16, 1899–1905 (2002), arXiv: cond-mat/0110121; “Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix,” J. Phys. A: Math. Gen., 35, 879–895 (2002); arXiv: cond-mat/0109078.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. K. Fabricius, “A new \(Q\)-matrix in the eight vertex model,” J. Phys. A: Math. Theor., 40, 4075–4086 (2007); arXiv: cond-mat/0610481.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. S. Kharchev and A. Zabrodin, “Theta vocabulary I,” J. Geom. Phys., 94, 19–31 (2015); arXiv: 1502.04603.

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Zabrodin and A. Zotov for the numerous and fruitful discussions.

Funding

The work of G. Kulkarni was supported by the SIMC postdoctoral grant of the Steklov Mathematical Institute. Section 4 of the paper represents the work of N. A. Slavnov. The work of N. A. Slavnov was supported by the Russian Science Foundation under grant no. 19-11-00062, https://rscf.ru/en/project/19-11-00062/, and performed at the Steklov Mathematical Institute, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Slavnov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 179–203 https://doi.org/10.4213/tmf10572.

Appendix A. Jacobi theta functions

Here, we only give some basic properties of Jacobi theta functions used in this paper (see [40] for more details).

The Jacobi theta functions are defined as

$$ \begin{alignedat}{3} &\theta_1(u|\tau)=-i\sum_{k\in\mathbb{Z}}(-1)^k q^{(k+\frac{1}{2})^2}e^{\pi i(2k+1)u},&\qquad &\theta_2(u|\tau)=\sum_{k\in\mathbb{Z}}q^{(k+\frac{1}{2})^2}e^{\pi i(2k+1)u}, \\ &\theta_3(u|\tau)=\sum_{k\in\mathbb{Z}}q^{k^2}e^{2\pi i ku},&\qquad &\theta_4(u|\tau)=\sum_{k\in \mathbb{Z}}(-1)^kq^{k^2}e^{2\pi i ku}, \end{alignedat}$$
(A.1)
where \(\tau\in\mathbb{C}\), \(\operatorname{Im}\tau>0\), and \(q=e^{\pi i\tau}\).

They have the following shift properties:

$$ \begin{alignedat}{3} &\theta_1(u+1/2|\tau)=\theta_2(u|\tau),&\qquad&\theta_2(u+1/2|\tau)=-\theta_1(u|\tau), \\ &\theta_1(u+1|\tau)=-\theta_1(u|\tau),&\qquad&\theta_2(u+1|\tau)=-\theta_2(u|\tau), \\ &\theta_1(u+\tau|\tau)=-e^{-\pi i(2u+\tau)}\theta_1(u|\tau),&\qquad&\theta_2(u+\tau|\tau)=e^{-\pi i(2u+\tau)}\theta_2(u|\tau). \end{alignedat}$$
(A.2)
In this paper, we use the identity
$$ 2\theta_1(u+v|2\tau)\theta_4(u-v|2\tau)=\theta_1(u|\tau)\theta_2(v|\tau)+\theta_2(u|\tau)\theta_1(v|\tau).$$
(A.3)
It follows from this identity that
$$ \theta_1(u|\tau)\theta_2(v|\tau)=\theta_1(u+v|2\tau)\theta_4(u-v|2\tau)+\theta_4(u+v|2\tau)\theta_1(u-v|2\tau).$$
(A.4)
In particular, setting \(v=u\) in (A.4), we obtain
$$ \theta_1(u|\tau)\theta_2(u|\tau)=\theta_1(2u|2\tau)\theta_4(0|2\tau).$$
(A.5)
Differentiating this equation with respect to \(u\) at zero, we arrive at
$$ \frac{\theta'_1(0|\tau)}{\theta'_1(0|2\tau)}=2\frac{\theta_4(0|2\tau)}{\theta_2(0|\tau)}.$$
(A.6)

Appendix B. Zero eigenvectors

Let \(M\) be an \(n\times n\) matrix. Let its matrix elements admit a representation

$$ M_{jk}=\sum_{\ell=1}^m A_{j\ell}B_{\ell k},$$
(B.1)
where \(m<n\). In other words, \(M\) is the product of two rectangular matrices of size \(n\times m\) and \(m\times n\). We assume that \(\operatorname{rank}B=m\). Otherwise, if \(\operatorname{rank}B=m'\) with \(m'<m\), then the rows of \(B\) are linearly dependent, and we can represent \(M\) as a sum of \(m'\) terms:
$$ M_{jk}=\sum_{\ell=1}^{m'}\tilde A_{j\ell}B_{\ell k}.$$
(B.2)
Obviously, \(\det M=0\).

We find zero eigenvectors of \(M\). For this, we extend the matrix \(B\) by adding \(n-m\) rows with elements \(B_{m+1,k},B_{m+2,k},\ldots,B_{n,k}\). We let \(\widetilde B\) denote this extended \(n\times n\) matrix. We require this extended matrix \(\widetilde B\) to be invertible. Then the zero eigenvectors \(\Psi^{(a)}\), \(a=1,\ldots,n-m\) have the components

$$ \Psi^{(a)}_j=(\widetilde B^{-1})_{j,m+a}.$$
(B.3)
The proof is elementary:
$$ \sum_{k=1}^nM_{jk}\Psi^{(a)}_k= \sum_{k=1}^n\sum_{\ell=1}^m A_{j\ell}B_{\ell k} (\widetilde B^{-1})_{k,m+a}= \sum_{\ell=1}^m A_{j\ell}\delta_{\ell,m+a}=0,$$
(B.4)
because \(\ell<m+a\). Because \(\widetilde B_{jk}\) is assumed invertible, the vectors \(\Psi^{(a)}\) are linearly independent.

In particular, let \(B\) be a rectangular Cauchy matrix

$$ B_{jk}=\frac{\theta_1(x_j-y_k+\lambda)}{\theta_1(x_j-y_k)},\qquad j=1,\ldots,m,\quad k=1,\ldots,n,$$
(B.5)
dependent on pairwise distinct complex numbers \(x_1,\ldots,x_m\) and \(y_1,\ldots,y_n\). We can build an extended matrix as follows:
$$ \widetilde B_{jk}=\frac{\theta_1(x_j-y_k+\lambda)}{\theta_1(x_j-y_k)},\qquad j,k=1,\ldots,n.$$
(B.6)
Here, \(x_{m+1},\ldots,x_n\) are generic complex numbers not equal to \(x_1,\ldots,x_m\) and \(y_1,\ldots,y_n\). Then the extended matrix \(\widetilde B\) is nondegenerate, and the inverse matrix is
$$ (\widetilde B^{-1})_{jk}= \frac1{\theta_1(\lambda)\theta_1(S+\lambda)}\frac{\theta_1(S+\lambda-x_k+y_j)}{\theta_1(x_k-y_j)} \frac{\theta_1(x_k-\bar y)\theta_1(\bar x-y_j)}{\theta_1(x_k-\bar x_k)\theta_1(\bar y_j- y_j)},$$
(B.7)
where
$$S=\sum_{j=1}^{n}(x_j-y_j).$$
Accordingly, the zero eigenvectors of \(M\) are
$$ \Psi^{(l)}_j=C_l\theta_1(S+\lambda-x_{m+l}+y_j)\frac{\theta_1(\bar x_{m+l}-y_j)}{\theta_1(\bar y_j- y_j)},$$
(B.8)
where \(C_l\) are some constants. We see that different eigenvectors are parameterized by the numbers \(x_{m+1},\ldots,x_n\).

Appendix C. Contour integral method

A contour integral method allows one to calculate or transform sums of a special form containing the Jacobi theta functions. To illustrate this method, we consider two examples.

The first example is related to the transformation of the matrix product \(\mathbf\Omega^1\mathbf\Omega^0\). It follows from (4.12) that the product \(\mathbf\Omega^1\mathbf\Omega^0\) has the form

$$ (\mathbf\Omega^1\mathbf\Omega^0)_{jk}=\frac{\theta_2(0)f(u_k,\bar u_k)}{\theta_1(x)\theta_2(x)f(u_j,\bar v)}H_{jk},$$
(C.1)
where
$$ H_{jk}=\sum_{a=1}^{n-2p+1} \frac{\theta_2(u_a-\bar u)\theta_1(u_a-\bar v)}{\theta_1(u_a-\bar u_a)\theta_2(u_a-\bar v)} \frac{\theta_2(u_{\ell j}-x)\theta_1(u_{\ell k}+x)}{\theta_2(u_a-u_j)\theta_2(u_a-u_k)}.$$
(C.2)
We consider the contour integral
$$ J=\frac{\theta'_1(0)}{2\pi i}\oint dz\, \frac{\theta_2(z-\bar u)\theta_1(z-\bar v)}{\theta_1(z-\bar u)\theta_2(z-\bar v)} \frac{\theta_2(z-u_{j}-x)\theta_1(z-u_{k}+x)}{\theta_2(z-u_j)\theta_2(z-u_k)},$$
(C.3)
where integration is carried out along the boundary of the fundamental domain. Using (A.2), we obtain that \(J=0\) due to periodicity (we recall that \(\operatorname{\#}\bar u=n-2p+1\) and \(\operatorname{\#}\bar v=n\)). On the other hand, this integral equals the sum of the residues within the integration contour. The sum of the residues in \(z=u_a\) gives \(H_{jk}\). There are also poles in \(z=v_q+1/2\), \(q=1,\ldots,n\). Finally, there is a pole at \(z=u_j+1/2\) for \({j=k}\).

Thus, we obtain

$$ H_{jk}=\delta_{jk}\frac{f(u_j,\bar v)}{f(u_j,\bar u_j)}\frac{\theta_1(x)\theta_2(x)}{\theta_2(0)}+ \theta_2(0)\sum_{q=1}^{n}\frac{f(v_q,\bar v_q)}{f(v_q,\bar u)} \frac{\theta_1(u_{j}-v_q+x)\theta_2(u_{k}-v_q-x)}{\theta_1(u_j-v_q)\theta_1(u_k-v_q)}.$$
(C.4)
This implies
$$ (\mathbf\Omega^1\mathbf\Omega^0)_{jk}=\delta_{jk}+ \frac{\theta_2^2(0)f(u_k,\bar u_k)}{\theta_1(x)\theta_2(x)f(u_j,\bar v)} \sum_{q=1}^{n}\frac{f(v_q,\bar v_q)}{f(v_q,\bar u)} \frac{\theta_1(u_{j}-v_q+x)\theta_2(u_{k}-v_q-x)}{\theta_1(u_j-v_q)\theta_1(u_k-v_q)}.$$
(C.5)
Hence, we arrive at (4.15).

In the second example, we calculate the coefficients \(\mathcal A_j\) in (4.27). We have

$$ \mathcal A_j=\frac{-1}{f(v_n,v_j)\theta_1(x)\theta_1(x-S)}\frac{\theta_2(\bar u-v_j)}{\theta_2(\bar v_{n,j}-v_j)} \frac{f(v_n,\bar v_n)}{f(v_n,\bar u)}G^a_j,$$
(C.6)
where
$$ G^a_j=\sum_{a=1}^{n-1} \frac{\theta_1(u_a-v_j-x+S)\theta_1(u_a-v_n+x)}{\theta_1(u_a-v_j)\theta_1(u_a-v_n)} \frac{\theta_1(u_a-\bar v_n)}{\theta_1(u_a-\bar u_a)}.$$
(C.7)
The function \(G^a_j\) can be found from the contour integral
$$ J^a_j=\frac{\theta'_1(0)}{2\pi i}\oint dz\, \frac{\theta_1(z-v_j-x+S)\theta_1(z-v_n+x)}{\theta_1(z-v_j)\theta_1(z-v_n)} \frac{\theta_1(z-\bar v_n)}{\theta_1(z-\bar u)}.$$
(C.8)
Due to the periodicity, this integral is zero. On the other hand, by virtue of the residue theorem, it gives \(G^a_j\) and the residue at the pole \(z=v_n\),
$$ J^a_j=0=G^a_j +\theta_1(x) \frac{\theta_1(v_{nj}-x+S)}{\theta_1(v_{nj})} \frac{\theta_1(v_n-\bar v_n)}{\theta_1(v_n-\bar u)},$$
(C.9)
leading to (4.28).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, G., Slavnov, N.A. Scalar products of Bethe vectors in the generalized algebraic Bethe ansatz. Theor Math Phys 217, 1574–1594 (2023). https://doi.org/10.1134/S0040577923100100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923100100

Keywords

Navigation