Skip to main content
Log in

Strong decays of the charmonium-like state \(Y(4230)\) and radiative transitions of low-lying charmoniums

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The recently reported strong decays of the charmonium-like state \(Y(4230)\) by the BESIII collaboration and the dominant radiative transitions of the charmonium low-lying excited states are studied within a covariant quark model by involving the analytic confinement concept. The \(Y(4230)\) resonance is interpreted as a four-quark state of molecular type. We use the compositeness condition to eliminate any constituent degrees of freedom from the space of physical states and rigorously fix the renormalized couplings of the hadron states. The helicity amplitudes, or Lorentz structures, are used to express the gauge-invariant transition amplitudes of the processes under consideration. The fractional strong decay width of \(Y\to J/\psi+f_0(980)\) is calculated, as is the branching ratio of strong decays (via the \(f_0(980)\) resonance) with hidden charms, \(\mathcal B(Y\to K^{+}K^{-}J/\psi)/\mathcal B(Y\to\pi^{+}\pi^{-}J/\psi)\), as measured by the BESIII Collaboration in 2022. Only one common adjustable parameter for the charmonium states \(\eta_c({}^1S_0)\), \(J/\psi({}^3S_1)\), \(\chi_{c0}({}^3P_0)\), \(\chi_{c1}({}^3P_1)\), \(h_c({}^1P_1)\), and \(\chi_{c2}({}^3P_{2})\) is introduced to describe the quark distribution inside the hadron. We calculate the fractional widths of one-photon radiative decays for the states \(J/\psi({}^3S_1)\), \(\chi_{cJ}({}^3P_{J})\), \(J=\{0,1,2\}\), and \(h_c({}^1P_1)\). Our estimates of the decay widths of the processes under consideration are in reasonable agreement with the latest experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aubert, R. Barate, D. Boutigny et al. [BaBar Collab.], “Observation of a broad structure in the \(\pi^{+}\pi^{-}J/\psi\) mass spectrum around 4.26 GeV/c\(^2\),” Phys. Rev. Lett., 95, 142001, 7 pp. (2005); arXiv: hep-ex/0506081.

    Article  ADS  Google Scholar 

  2. N. Brambilla, S. Eidelman, B. K. Heltsley et al., “Heavy quarkonium: Progress, puzzles, and opportunities,” Eur. Phys. J. C, 71, 1534, 178 pp. (2011); arXiv: 1010.5827.

    Article  ADS  Google Scholar 

  3. S.-L. Zhu, “The possible interpretations of \(Y(4260)\),” Phys. Lett. B, 625, 212–216 (2005); arXiv: hep-ph/0507025.

    Article  ADS  Google Scholar 

  4. E. Kou and O. Pene, “Suppressed decay into open charm for the \(Y(4260)\) being an hybrid,” Phys. Lett. B, 631, 164–169 (2005); arXiv: hep-ph/0507119.

    Article  ADS  Google Scholar 

  5. F. E. Close and P. R. Page, “Gluonic charmonium resonances at BaBar and Belle?,” Phys. Lett. B, 628, 215–222 (2005); arXiv: hep-ph/0507199.

    Article  ADS  Google Scholar 

  6. L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, “Four quark interpretation of \(Y(4260)\),” Phys. Rev. D, 72, 031502, 3 pp. (2005); arXiv: hep-ph/0507062.

    Article  ADS  Google Scholar 

  7. X. Liu, X.-Q. Zeng, and X.-Q. Li, “Possible molecular structure of the newly observed \(Y(4260)\),” Phys. Rev. D, 72, 054023, 4 pp. (2005); arXiv: hep-ph/0507177.

    Article  ADS  Google Scholar 

  8. Q. Wang, C. Hanhart, and Q. Zhao, “Decoding the riddle of \(Y(4260)\) and \(Z_c(3900)\),” Phys. Rev. Lett., 111, 132003, 5 pp. (2013); arXiv: 1303.6355.

    Article  ADS  Google Scholar 

  9. G. Li and X.-H. Liu, “Investigating possible decay modes of \(Y(4260)\) under \(D_1(2420)\bar{D}+\text{c.c.}\) molecular state ansatz,” Phys. Rev. D, 88, 094008, 8 pp. (2013); arXiv: 1307.2622.

    Article  ADS  Google Scholar 

  10. Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, “Selected strong decay modes of Y(4260),” Phys. Rev. D, 89, 034018, 7 pp. (2014); arXiv: 1310.4373.

    Article  ADS  Google Scholar 

  11. M. Ablikim, M. N. Achasov, P. Adlarson et al. [BESIII Collab.], “Observation of the \(Y(4230)\) and a new structure in \(e^{+}e^{-}\to K^{+}K^{-}J/\psi\),” Chinese Phys. C, 46, 111002, 16 pp. (2022); arXiv: 2204.07800.

    Article  ADS  Google Scholar 

  12. R. L. Workman, V. D. Burkert, V. Crede et al. [Particle Data Group], “The review of particle physics,” Prog. Theor. Exp. Phys., 2022, 083C01, 2269 pp. (2022).

    Article  Google Scholar 

  13. M. Ablikim, M. N. Achasov, S. Ahmed et al. [BESIII Collab.], “Observation of OZI-suppressed decays \(\chi_{cJ}\to\omega\phi\),” Phys. Rev. D, 99, 012015, 9 pp. (2019); R. Aaij, B. Adeva, M. Adinolfi et al. [LHCb Collab.], “Model- independent confirmation of the \(Z(4430)^{-}\) state,” Phys. Rev. D, 92, 112009, 15 pp. (2015).

    Article  ADS  Google Scholar 

  14. P. Guo, T. Yépez-Marínez, and A. P. Szczepaniak, “Charmonium meson and hybrid radiative transitions,” Phys. Rev. D, 89, 116005, 12 pp. (2014).

    Article  ADS  Google Scholar 

  15. T. Barnes, S. Godfrey, and E. S. Swanson, “Higher charmonia,” Phys. Rev. D, 72, 054026, 20 pp. (2005).

    Article  ADS  Google Scholar 

  16. S. Dubnička, A. Z. Dubničková, A. Issadykov, M. A. Ivanov, and A. Liptaj, “\(Y(4260)\) as four- quark state,” Phys. Rev. D, 101, 094030, 7 pp. (2020); arXiv: 2003.04142.

    Article  ADS  Google Scholar 

  17. G. Ganbold, “Glueballs and mesons: The ground states,” Phys. Rev. D, 79, 034034, 10 pp. (2009).

    Article  ADS  Google Scholar 

  18. G. Ganbold, “QCD effective coupling in the infrared region,” Phys. Rev. D, 81, 094008, 9 pp. (2010).

    Article  ADS  Google Scholar 

  19. G. V. Efimov and G. Ganbold, “Meson spectrum and analytic confinement,” Phys. Rev. D, 65, 054012, 9 pp. (2002); G. Ganbold, “Hadron spectrum and infrared-finite behavior of QCD running coupling,” Phys. Part. Nucl., 43, 79–128 (2012).

    Article  ADS  Google Scholar 

  20. T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner, and E. Lyubovitskij, “Relativistic constituent quark model with infrared confinement,” Phys. Rev. D, 81, 034010, 14 pp. (2010).

    Article  ADS  Google Scholar 

  21. G. Ganbold, T. Gutsche, M. A. Ivanov, and V. E. Lyubovitskij, “Radiative transitions of charmonium states in the covariant confined quark model,” Phys. Rev. D, 104, 094048, 15 pp. (2021).

    Article  ADS  Google Scholar 

  22. T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner, and V. E. Lyubovitskij, “Relativistic constituent quark model with infrared confinement,” Phys. Rev. D, 81, 034010, 14 pp. (2010); arXiv: 0912.3710.

    Article  ADS  Google Scholar 

  23. A. Salam, “Lagrangian theory of composite particles,” Nuovo Cim., 25, 224–227 (1962).

    Article  ADS  MATH  Google Scholar 

  24. S. Weinberg, “Elementary particle theory of composite particles,” Phys. Rev., 130, 776–783 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  25. C. F. Uhlemann and N. Kauer, “Narrow-width approximation accuracy,” Nucl. Phys. B, 814, 195–211 (2009).

    Article  ADS  MATH  Google Scholar 

  26. R. Aaij, C. Abellan Beteta, B. Adeva et al. [LHCb Collab.], “Measurement of the cross- section ratio \(\sigma(\chi_{c2})/\sigma(\chi_{c1})\) for prompt \(\chi_c\) production at \(\sqrt{s}=7\) TeV,” Phys. Lett. B, 714, 215–223 (2015); arXiv: 1202.1080; R. Aaij, B. Adeva, M. Adinolfi et al. [LHCb Collab.], “Measurement of the relative rate of prompt \(\chi_{c0}\), \(\chi_{c1}\) and \(\chi_{c2}\) production at \(\sqrt{s}=7\) TeV,” JHEP, 2013, 115, 20 pp. (2013).

    Article  Google Scholar 

  27. D. Bečirević and F. Sanfilippo, “Lattice QCD study of the radiative decays \(J/\psi\to\eta_c\gamma\) and \(h_c\to\eta_c\gamma\),” JHEP, 2013, 028, 23 pp. (2013).

    Article  Google Scholar 

  28. R. Bruschini and P. González, “Radiative decays in bottomonium beyond the \(p/m\) approximation,” Phys. Rev. D, 101, 014027, 16 pp. (2020).

    Article  ADS  Google Scholar 

  29. E. Eichten, S. Godfrey, H. Mahlke, and J. L. Rosner, “Quarkonia and their transitions,” Rev. Mod. Phys., 80, 1161–1193 (2008).

    Article  ADS  Google Scholar 

  30. M. B. Voloshin, “Charmonium,” Prog. Part. Nucl. Phys., 61, 455–511 (2008).

    Article  ADS  Google Scholar 

  31. W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, “Charmonium spectrum and electromagnetic transitions with higher multipole contributions,” Phys. Rev. D, 95, 034026, 21 pp. (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ganbold.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 490–503 https://doi.org/10.4213/tmf10462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganbold, G. Strong decays of the charmonium-like state \(Y(4230)\) and radiative transitions of low-lying charmoniums. Theor Math Phys 216, 1326–1336 (2023). https://doi.org/10.1134/S0040577923090076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923090076

Keywords

Navigation