Skip to main content
Log in

Integrable symplectic maps via reduction of Bäcklund transformation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the stationary potential equations as illustrative examples to explain how to construct integrable symplectic maps via Bäcklund transformations. We first give a terse survey of Bäcklund transformations of the potential KdV equation and the potential fifth-order KdV equation. Then, using Jacobi–Ostrogradsky coordinates, we obtain canonical Hamiltonian forms of the stationary potential equations. Finally, we construct symplectic maps from the reduction of a Bäcklund transformation and verify that they are integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability (Cambridge Texts in Applied Mathematics, Vol. 54), Cambridge Univ. Press, Cambridge (2016).

    Book  Google Scholar 

  2. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach,” Commun. Math. Phys., 233, 513–543 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Adler and P. van Moerbeke, “Toda–Darboux maps and vertex operators,” Internat. Math. Res. Notices, 489–511 (1998).

    Article  MathSciNet  Google Scholar 

  4. L. D. Faddeev and A. Y. Volkov, “Hirota equation as an example of integrable symplectic map,” Lett. Math. Phys., 32, 125–135 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Grammaticos, T. Tamizhmani, and Y. Kosmann-Schwarzbach (eds.), Discrete Integrable Systems (Lecture Notes in Physics, Vol. 644), Springer, Berlin–Heidelberg (2004).

    Book  Google Scholar 

  6. J. Moser and A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials,” Commun. Math. Phys., 139, 217–243 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Bruschi, O. Ragnisco, P. M. Santini, and G. Z. Tu, “Integrable symplectic maps,” Phys. D, 49, 273–294 (1991).

    Article  MathSciNet  Google Scholar 

  8. Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Progress in Mathematics, Vol. 219), Birkhäuser, Basel (2003).

    Book  Google Scholar 

  9. A. P. Veselov, “Integrable maps,” Russian Math. Surveys, 46, 1–51 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Du, “Complex form, reduction and Lie–Poisson structure for the nonlinearized spectral problem of the Heisenberg hierarchy,” Phys. A, 303, 439–456 (2002).

    Article  MathSciNet  Google Scholar 

  11. D. Du and C. Cao, “The Lie–Poisson representation of the nonlinearized eigenvalue problem of the Kac–van Moerbeke hierarchy,” Phys. Lett. A, 278, 209–224 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. Wu and D. Du, “On the Lie–Poisson structure of the nonlinearized discrete eigenvalue problem,” J. Math. Phys., 41, 5832–5848 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Cao and X. Xu, “A finite genus solution of the H1 model,” J. Phys. A: Math. Theor., 45, 055213, 13 pp. (2012).

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Cao and G. Zhang, “A finite genus solution of the Hirota equation via integrable symplectic maps,” J. Phys. A: Math. Theor., 45, 095203, 25 pp. (2012).

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Cao, Y. Wu, and X. Geng, “Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system,” J. Math. Phys., 40, 3948–3970 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Cao, “Nonlinearization of the Lax system for AKNS hierarchy,” Sci. China Ser. A, 33, 528–536 (1990).

    MathSciNet  MATH  Google Scholar 

  17. C. Cao and X. Geng, “C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy,” J. Phys. A: Math. Gen., 23, 4117–4125 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  18. Y. Wu and X. Geng, “A new integrable symplectic map of Neumann type,” J. Phys. Soc. Japan, 68, 784–790 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. P. Fordy, “Integrable symplectic maps,” in: Symmetries and Integrability of Difference Equations (London Mathematical Society Lecture Note Series, Vol. 225, P. A. Clarkson, F. W. Nijhoff, eds.), Cambridge Univ. Press, Cambridge (1999), pp. 43–55.

    Article  MathSciNet  Google Scholar 

  20. A. P. Fordy, A. B. Shabat, and A. P. Veselov, “Factorization and Poisson correspondences,” Theoret. and Math. Phys., 105, 1369–1386 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  21. G. L. Lamb, Jr., Elements of Soliton Theory, Wiley, New York (1980).

    Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Project No. 11271337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Wang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 39-50 https://doi.org/10.4213/tmf10023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Liu, Y. & Wang, X. Integrable symplectic maps via reduction of Bäcklund transformation. Theor Math Phys 208, 886–895 (2021). https://doi.org/10.1134/S0040577921070035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921070035

Keywords

Navigation