Skip to main content
Log in

Multi-component Toda lattice in centro-affine \({\mathbb R}^n\)

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the group-based discrete moving frame method to study invariant evolutions in a \(n\)-dimensional centro-affine space. We derive the induced integrable equations for invariants, which can be transformed to local and nonlocal multi-component Toda lattices under a Miura transformation, and thus establish their geometric realizations in centro-affine space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hasimoto, “A soliton on a vortex filament,” J. Fluid Mech., 51, 477–485 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Fels and P. J. Olver, “Moving coframes. I. A practical algorithm,” Acta Appl. Math., 51, 161–213 (1998).

    Article  MathSciNet  Google Scholar 

  3. M. Fels and P. J. Olver, “Moving coframes. II. Regularization and theoretical foundations,” Acta Appl. Math., 55, 127–208 (1999).

    Article  MathSciNet  Google Scholar 

  4. G. MaríBeffa, “Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces,” Proc. Amer. Math. Soc., 134, 779–791 (2006).

    MathSciNet  Google Scholar 

  5. G. MaríBeffa, “Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds,” Pacific J. Math., 247, 163–188 (2010).

    Article  MathSciNet  Google Scholar 

  6. E. L. Mansfield, G. MaríBeffa, and J. P. Wang, “Discrete moving frames and integrable systems,” Found. Comput. Math., 13, 545–582 (2013).

    Article  MathSciNet  Google Scholar 

  7. G. MaríBeffa and J. P. Wang, “Hamiltonian evolutions of twisted polygons in \(\mathbb {RP}^n\),” Nonlinearity, 26, 2515–2551 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  8. E. L. Mansfield, A. Rojo-Echeburúa, P. E. Hydon, and L. Peng, “Moving frames and Noether’s finite difference conservation laws I,” Trans. Math. Appl., 3, 004 (2019) 47.

    MathSciNet  Google Scholar 

  9. E. L. Mansfield and A. Rojo-Echeburúa, “Moving frames and Noether’s finite difference conservation laws II,” Trans. Math. Appl., 3, 005 (2019) 26.

    MathSciNet  Google Scholar 

  10. B. Wang, X.-K. Chang, X.-B. Hu, and S.-H. Li, “On moving frames and Toda lattices of BKP and CKP types,” J. Phys. A, 51, 324002 (2018) 22.

    Article  MathSciNet  Google Scholar 

  11. G. MaríBeffa and A. Calini, “Integrable evolutions of twisted polygons in centro-affine \(\mathbb R^m\),” arXiv:1909.13435.

  12. J. Benson and F. Valiquette, “Symmetry reduction of ordinary finite difference equations using moving frames,” J. Phys. A: Math. Theor., 50, 195201 (2017) 24.

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Toda, Theory of Nonlinear Lattice (Springer Series in Solid-State Sciences, Vol. 20), Springer, Berlin (1989).

    Book  Google Scholar 

  14. H. Flaschka, “The Toda lattice. II. Existence of integrals,” Phys. Rev. B, 9, 1924–1925 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Flaschka, “On the Toda lattice. II. Inverse-scattering solution,” Progr. Theor. Phys., 51, 703–716 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. V. Manakov, “Complete integrability and stochastization in discrete dynamical systems,” Sov. Phys. JETP, 40, 269–274 (1975).

    ADS  Google Scholar 

  17. M. Blaszak and K. Marciniak, “\(R\)-matrix approach to lattice integrable systems,” J. Math. Phys., 35, 4661–4682 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Li, “Solutions of bigraded Toda hierarchy,” J. Phys. A: Math. Theor., 44, 255201 (2011) 29.

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Carpentier, A. V. Mikhailov, and J. P. Wang, “Rational recursion operators for integrable differential-difference equations,” Commun. Math. Phys., 370, 807–851 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Carpentier, A. V. Mikhailov, and J. P. Wang, “PreHamiltonian and Hamiltonian operators for differential-difference equations,” Nonlinearity, 33, 915–941 (2020).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The paper is supported by the EPSRC grant EP/P012698/1. JPW would like to thank the EPSRC for funding this research. This work was done during the visit of XJD and CZL in the University of Kent, which is supported by the China Scholarship Council. XJD and CZL would like to thank the School of Mathematics, Statistics & Actuarial Science of Kent University for the hospitality. CZL is supported by the National Natural Science Foundation of China under Grant No. 12071237 and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ping Wang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 347-360 https://doi.org/10.4213/tmf10031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Li, C. & Wang, J.P. Multi-component Toda lattice in centro-affine \({\mathbb R}^n\). Theor Math Phys 207, 701–712 (2021). https://doi.org/10.1134/S0040577921060027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921060027

Keywords

Navigation