Skip to main content
Log in

Unfamiliar Aspects of Bäcklund Transformations and an Associated Degasperis–Procesi Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We summarize the results of our recent work on Bäcklund transformations (BTs), particularly focusing on the relation between BTs and infinitesimal symmetries. We present a BT for an associated Degasperis–Procesi (aDP) equation and its superposition principle and investigate the solutions generated by applying this BT. Following our general methodology, we use the superposition principle of the BT to generate the infinitesimal symmetries of the aDP equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Rasin and J. Schiff, “The Gardner method for symmetries,” J. Phys. A: Math. Theor., 46, 155202 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1993).

    Book  MATH  Google Scholar 

  3. P. J. Olver, “Evolution equations possessing infinitely many symmetries,” J. Math. Phys., 18, 1212–1215 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Kumei, “Invariance transformations, invariance group transformations, and invariance groups of the sine- Gordon equations,” J. Math. Phys., 16, 2461–2468 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. G. Rasin and J. Schiff, “Bäcklund transformations for the Camassa–Holm equation,” J. Nonlin. Sci., 27, 45–69 (2017).

    Article  ADS  MATH  Google Scholar 

  6. J. Schiff, “The Camassa–Holm equation: A loop group approach,” Phys. D, 121, 24–43 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. G. Rasin and J. Schiff, “Bäcklund transformations for the Boussinesq equation and merging solitons,” J. Phys. A: Math. Theor., 50, 325202 (2017).

    Article  MATH  Google Scholar 

  8. A. Degasperis, D. D. Holm, and A. Hone, “A new integrable equation with peakon solutions,” Theor. Math. Phys., 133, 1463–1474 (2002).

    Article  MathSciNet  Google Scholar 

  9. V. E. Adler and A. B. Shabat, “Toward a theory of integrable hyperbolic equations of third order,” J. Phys. A: Math. Theor., 45, 395207 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Degasperis and M. Procesi, “Asymptotic integrability,” in: Symmetry and Perturbation Theory (Rome, 16–22 December 1998, A. Degasperis and G. Gaeta, eds.), World Scientific, Singapore (1999), pp. 23–37.

    Google Scholar 

  11. H. R. Dullin, G. A. Gottwald, and D. D. Holm, “Camassa–Holm, Korteweg–de Vries-5, and other asymptotically equivalent equations for shallow water waves,” Fluid Dynam. Res., 33, 73–95 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. D. Holm and M. F. Staley, “Nonlinear balance and exchange of stability of dynamics of solitons, peakons, ramps/cliffs, and leftons in a 1+1 nonlinear evolutionary PDE,” Phys. Lett. A, 308, 437–444 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D. D. Holm and M. F. Staley, “Wave structure and nonlinear balances in a family of evolutionary PDEs,” SIAM J. Appl. Dyn. Syst., 2, 323–380 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. N. W. Hone and J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations,” Inverse Problems, 19, 129–145 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. C. Nucci, “Painlevé property and pseudopotentials for nonlinear evolution equations,” J. Phys. A: Math. Gen., 22, 2897–2914 (1989).

    Article  ADS  MATH  Google Scholar 

  16. J. Kang, X. Liu, P. J. Olver, and C. Qu, “Liouville correspondences between integrable hierarchies,” SIGMA, 13, 035 (2017).

    MathSciNet  MATH  Google Scholar 

  17. H. Lundmark and J. Szmigielski, “Multi-peakon solutions of the Degasperis–Procesi equation,” Inverse Problems, 19, 1241–1245 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V. O. Vakhnenko and E. J. Parkes, “Periodic and solitary-wave solutions of the Degasperis–Procesi equation,” Chaos Solitons Fractals, 20, 1059–1073 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J. Lenells, “Traveling wave solutions of the Degasperis–Procesi equation,” J. Math. Anal. Appl., 306, 72–82 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Matsuno, “Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit,” Inverse Problems, 21, 1553–1570 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Y. Matsuno, “The N-soliton solution of the Degasperis–Procesi equation,” Inverse Problems, 21, 2085–2101 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. B.-F. Feng, K.-I. Maruno, and Y. Ohta, “On the τ -functions of the Degasperis–Procesi equation,” J. Phys. A: Math. Theor., 46, 045205 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. B.-F. Feng, K.-I. Maruno, and Y. Ohta, “An integrable semi-discrete Degasperis–Procesi equation,” Nonlinearity, 30, 2246–2267 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S. Stalin and M. Senthilvelan, “Multi-loop soliton solutions and their interaction in the Degasperis–Procesi equation,” Phys. Scr., 86, 015006 (2012); arXiv:1207.4634v1 [math-ph] (2012).

    Article  ADS  MATH  Google Scholar 

  25. A. B. Shabat, V. É. Adler, V. G. Marikhin, A. A. Mikhailov, and V. V. Sokolov, Encyclopedia of Integrable Systems [in Russian], ITF, Moscow (2009).

    Google Scholar 

  26. A. P. Fordy and J. Gibbons, “Some remarkable nonlinear transformations,” Phys. Lett. A, 75, 325 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  27. A. P. Fordy and J. Gibbons, “Factorization of operators: I. Miura transformations,” J. Math. Phys., 21, 2508–2510 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. P. Fordy and J. Gibbons, “Factorization of operators: II,” J. Math. Phys., 22, 1170–1175 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. V. Novikov, “Generalizations of the Camassa–Holm equation,” J. Phys. A: Math. Theor., 42, 342002 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. N. W. Hone and J. P. Wang, “Integrable peakon equations with cubic nonlinearity,” J. Phys. A: Math. Theor., 41, 372002 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Fu and F. Nijhoff, “On reductions of the discrete Kadomtsev–Petviashvili-type equations,” J. Phys. A: Math. Theor., 50, 505203 (2017); arXiv:1705.04819v3 [nlin.SI] (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Rasin.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 196, No. 3, pp. 449–464, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasin, A.G., Schiff, J. Unfamiliar Aspects of Bäcklund Transformations and an Associated Degasperis–Procesi Equation. Theor Math Phys 196, 1333–1346 (2018). https://doi.org/10.1134/S0040577918090076

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918090076

Keywords

Navigation