Skip to main content
Log in

A Direct Algorithm for Constructing Recursion Operators and Lax Pairs for Integrable Models

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We suggest an algorithm for seeking recursion operators for nonlinear integrable equations. We find that the recursion operator R can be represented as a ratio of the form R = L1−1 L2, where the linear differential operators L1 and L2 are chosen such that the ordinary differential equation (L2 −λL1)U = 0 is consistent with the linearization of the given nonlinear integrable equation for any value of the parameter λ ∈ C. To construct the operator L1, we use the concept of an invariant manifold, which is a generalization of a symmetry. To seek L2, we then take an auxiliary linear equation related to the linearized equation by a Darboux transformation. It is remarkable that the equation L1\(\tilde U\) = L2U defines a B¨acklund transformation mapping a solution U of the linearized equation to another solution \(\tilde U\) of the same equation. We discuss the connection of the invariant manifold with the Lax pairs and the Dubrovin equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. T. Habibullin, A. R. Khakimova, and M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations,” J. Phys. A: Math. Theor., 49, 035202 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. V. Pavlova, I. T. Habibullin, and A. R. Khakimova, “On one integrable discrete system [in Russian],” in: Differential Equations: Mathematical Physics (Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., Vol. 140), VINITI, Moscow (2017), pp. 30–42.

    Google Scholar 

  3. I. T. Habibullin and A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains,” Theor. Math. Phys., 191, 793–810 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. I. T. Habibullin and A. R. Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz,” J. Phys. A: Math. Theor., 50, 305206 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Kh. Ibragimov and A. B. Shabat, “Evolutionary equations with nontrivial Lie–Bäcklund group,” Funct. Anal. Appl., 14, 19–28 (1980).

    Article  MATH  Google Scholar 

  6. B. I. Suleimanov, “The ‘quantum’ linearization of the Painleve equations as the component of their L–A pairs,” Ufimsk. Mat. Zh., 4, 127–136 (2012).

    MathSciNet  Google Scholar 

  7. V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem: I,” Funct. Anal. Appl., 8, 226–235 (1974).

    Article  MATH  Google Scholar 

  8. V. E. Zakharov and A. B. Shabat, “Integration of nonlinear equations of mathematical physics by the method of inverse scattering: II,” Funct. Anal. Appl., 13, 166–174 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. D. Wahlquist and F. B. Estabrook, “Prolongation structures of nonlinear evolution equations,” J. Math. Phys., 16, 1–7 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J. Weiss, M. Tabor, and G. Carnevale, “The Painlevé property for partial differential equations,” J. Math. Phys., 24, 522–526 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Musette and R. Conte, “Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations,” J. Math. Phys., 32, 1450–1457 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. F. W. Nijhoff and A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system,” Glasg. Math. J., 43, No. A, 109–123 (2001).

    Google Scholar 

  13. A. I. Bobenko and Yu. B. Suris, “Integrable systems on quad–graphs,” Int. Math. Res. Notices, 2002, 573–611 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system,” Phys. Lett. A, 297, 49–58 (2002); arXiv:nlin/0110027v1 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. I. Yamilov, “On the classification of discrete equations [in Russian],” in: Integrable Systems (A. B. Shabat, ed.), Bashkirskij Filial Akademii Nauk SSSR, Ufa (1982), pp. 95–114.

    Google Scholar 

  16. P. Xenitidis, “Integrability and symmetries of difference equations: The Adler–Bobenko–Suris case,” in: Group Analysis of Differential Equations and Integrable Systems (Protaras, Cyprus, 26–30 October 2008, N. Ivanova, C. Sophocleous, R. Popovych, P. Damianou, and A. Nikitin, eds.), Cyprus Univ., Protaras, Cyprus (2008), pp. 226–142; arXiv:0902.3954v1 [nlin.SI] (2009).

    Google Scholar 

  17. M. Gürses, A. Karasu, and V. V. Sokolov, “On construction of recursion operators from Lax representation,” J. Math. Phys., 40, 6473–6490 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Korteweg–de Vries equation and generalizations: VI. Methods for exact solution,” Commun. Pure Appl. Math., 27, 97–133 (1974).

    Article  MATH  Google Scholar 

  19. I. M. Gel’fand and L. A. Dikii, “Fractional powers of operators and Hamiltonian systems,” Funct. Anal. Appl., 10, 259–273 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Magri, “A simple model of the integrable Hamiltonian equation,” J. Math. Phys., 19, 1156–1170 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. V. V. Sokolov, “On the Hamiltonian property of the Krichever–Novikov equation,” Sov. Math. Dokl., 30, 44–46 (1984).

    MATH  Google Scholar 

  22. M. Gürses and A. Karasu, “Integrable KdV systems: Recursion operators of degree four,” Phys. Lett. A, 251, 247–249 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. I. Svinolupov, “Jordan algebras and generalized Korteweg–de Vries equations,” Theor. Math. Phys., 87, 611–620 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Krasil’shchik, “Cohomology background in geometry of PDE,” in: Secondary Calculus and Cohomological Physics (Contemp. Math., Vol. 219, M. Henneaux, J. Krasil’shchik, and A. Vinogradov, eds.), Amer. Math. Soc., Providence, R. I. (1998), pp. 121–140.

    Google Scholar 

  25. H. Zhang, G. Z. Tu, W. Oevel, and B. Fuchssteiner, “Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure,” J. Math. Phys., 32, 1908–1918 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. W. Oevel, H. Zhang, and B. Fuchssteiner, “Mastersymmetries and multi–Hamiltonian formulations for some integrable lattice systems,” Progr. Theoret. Phys., 81, 294–308 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. J. Olver, “Evolution equations possessing infinitely many symmetries,” J. Math. Phys., 18, 1212–1215 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. I. Yamilov, “Symmetries as integrability criteria for differential difference equations,” J. Phys. A: Math. Gen., 39, R541–R623 (2006).

    Google Scholar 

  29. D. Levi and R. Yamilov, “Conditions for the existence of higher symmetries of evolutionary equations on the lattice,” J. Math. Phys., 38, 6648–6674 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. F. Khanizadeh, A. V. Mikhailov, and J. P. Wang, “Darboux transformations and recursion operators for differential–difference equations,” Theor. Math. Phys., 177, 1606–1654 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  31. R. N. Garifullin, E. V. Gudkova, and I. T. Habibullin, “Method for searching higher symmetries for quad–graph equations,” J. Phys. A: Math. Theor., 44, 325202 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. P. E. Hydon and C. M. Viallet, “Asymmetric integrable quad–graph equations,” Appl. Anal., 89, 493–506 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Garifullin, I. Habibullin, and M. Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space–time,” SIGMA, 8, 062 (2012).

    MathSciNet  MATH  Google Scholar 

  34. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Non–linear equations of Korteweg–de Vries type, finite–zone linear,” Russ. Math. Surveys, 31, 59–146 (1976).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Habibullin.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 196, No. 2, pp. 294–312, August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibullin, I.T., Khakimova, A.R. A Direct Algorithm for Constructing Recursion Operators and Lax Pairs for Integrable Models. Theor Math Phys 196, 1200–1216 (2018). https://doi.org/10.1134/S004057791808007X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791808007X

Keywords

Navigation