Skip to main content
Log in

Critical behavior of the O(n) ϕ 4 model with an antisymmetric tensor order parameter: Three-loop approximation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the critical behavior of the O(n)-symmetric model of the ϕ 4 type with an antisymmetric tensor order parameter. According to a previous study of the one-loop approximation in the quantum field theory renormalization group, there is an IR-attractive fixed point in the model, and IR scaling with universal indices hence applies. Using a more specific analysis based on three-loop calculations of the renormalization-group functions and Borel conformal summation, we show that the IR behavior is in fact governed by another fixed point of the renormalization-group equations and the model therefore belongs to a different universality class than the one suggested by the simplest one-loop approximation. Nevertheless, the validity of the obtained results remains a subject for discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics: Part 1 [in Russian], Nauka, Moscow (1976); English transl., Butterworth-Heinemann, Oxford (1980).

    Google Scholar 

  2. A. Patashinskii and V. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka, Moscow (1982); English transl. prev. ed., Pergamon, Oxford (1979).

    Google Scholar 

  3. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Intl. Series Monogr. Phys., Vol. 77), Oxford Univ. Press, Oxford (1989).

    MATH  Google Scholar 

  4. A. N. Vasil’ev, Quantum Field Renormalization-Group in Critical Behavior Theory and Stochastic Dynamics [in Russian], Petersburg Inst. Nucl. Phys., St. Petersburg (1998); English transl.: The Field Theoretic Renormalization-Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, Fla. (2004).

    Google Scholar 

  5. H. Kleinert and V. Schulte-Frohlinde, Critical Properties of f4-Theories, World Scientific, Singapore (2001).

    Book  MATH  Google Scholar 

  6. V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Field-Theoretical and Numerical Methods of the Description of Critical Phenomena in Structurally Disordered Systems [in Russian], Omsk State Univ. Press, Omsk (2012).

    Google Scholar 

  7. R. K. P. Zia and D. J. Wallace, “Critical behaviour of the continuous n-component Potts model,” J. Phys. A: Math. Gen., 8, 1495–1507 (1975)

    Article  ADS  Google Scholar 

  8. R. G. Priest and T. C. Lubensky, “Critical properties of two tensor models with application to the percolation problem,” Phys. Rev. B, 13, 4159–4171 (1976); Erratum, 14, 5125 (1976).

    Article  ADS  Google Scholar 

  9. A. L. Korzhenevskii and B. N. Shalaev, “Effect of fluctuations on the properties of the phase transition from a nematic liquid crystal to an isotropic liquid,” JETP, 49, 1094–1100 (1979).

    ADS  Google Scholar 

  10. P. W. Anderson and W. F. Brinkman, “Anisotropic superfluidity in 3He: A possible interpretation of its stability as a spin-fluctuation effect,” Phys. Rev. Lett., 30, 1108–1111 (1973)

    Article  ADS  Google Scholar 

  11. W. F. Brinkman, J. Serene and P. W. Anderson, “Spin-fluctuation stabilization of anisotropic superfluid states,” Phys. Rev. A, 10, 2386–2394 (1974).

    Article  ADS  Google Scholar 

  12. A. I. Sokolov, “Phase diagram of superfluid He3,” JETP, 51, 998–1005 (1980); “Thermodynamic potentials of the superfluid phases of helium-3 in the region of strong critical fluctuations,” JETP, 57, 798 (1983).

    ADS  Google Scholar 

  13. J. A. Sauls and J. W Serene, Phys. Rev. D, 17, 1524–1528 (1978).

    Article  ADS  Google Scholar 

  14. A. I. Sokolov, “Phase transitions in a superfluid neutron liquid,” JETP, 52, 575–576 (1980).

    ADS  Google Scholar 

  15. M. V. Komarova, M. Yu. Nalimov, and J. Honkonen, Theor. Math. Phys., 176, 906–912 (2013).

  16. N. V. Antonov, M. V. Kompaniets, and N. M. Lebedev, “Critical behaviour of the O(n)-f4 model with an antisymmetric tensor order parameter,” J. Phys. A: Math. Theor., 46, 405002 (2013).

    Article  ADS  MATH  Google Scholar 

  17. S. A. Brazovski and S. G. Dmitriev, “Phase transitions in cholesteric liquid crystals,” JETP, 42, 497–502 (1975)

    ADS  Google Scholar 

  18. S. A. Brazovski and V. M. Filev, “Critical phenomena in cholesteric liquid crystals,” JETP, 48, 497–573 (1978)

    Google Scholar 

  19. H. Grebel, R. M. Hornreich, and S. Shtrikman, “Landau theory of cholesteric blue phases,” Phys. Rev. A, 28, 1114–1138 (1983); “Landau theory of cholesteric blue phases: The role of higher harmonics,” Phys. Rev. A, 30, 3264–3278 (1984)

    Article  ADS  Google Scholar 

  20. R. M. Hornreich and S. Shtrikman, “Some open questions in cholesteric blue phases,” Z. Phys. B, 68, 369–373 (1987).

    Article  ADS  Google Scholar 

  21. V. A. Belyakov and V. E. Dmitrienko, “The blue phase of liquid crystals,” Sov. Phys. Usp., 28, 535–562 (1985).

    Article  ADS  Google Scholar 

  22. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry [in Russian], Nauka, Moscow (1984); English transl., Kluwer, Dordrecht (1990).

    Book  Google Scholar 

  23. M. T. Dove and S. A. T. Redfern, “Lattice simulation studies of the ferroelastic phase transitions in (Na,K)Al Si3O8 and (Sr,Ca)Al2Si2O8 feldspar solid solutions,” Am. Mineral., 82, 8–15 (1997)

    Article  ADS  Google Scholar 

  24. G. W. Watson and S. C. Parker, “Dynamical instabilities in a-quartz and a-berlinite: A mechanism for amorphization,” Phys. Rev. B, 52, 13306–13309 (1995).

    Article  ADS  Google Scholar 

  25. S. V. Goryainov and N. N. Ovsyuk, “Twisting of a-quartz tetrahedra at pressures near the transition to the amorphous state,” JETP Lett., 69, 467–471; “Mechanism of the formation of a soft mode in ferroelastic phase transition,” JETP Lett., 73, 408–410 (2001).

    Google Scholar 

  26. G. A. Kalagov, M. V. Kompaniets, and M. Yu. Nalimov, “Renormalization-group investigation of a superconducting U(r)-phase transition using five loops calculations,” arXiv:1505.07360v1 [cond-mat.stat-mech] (2015).

    MATH  Google Scholar 

  27. G. A. Kalagov, M. Yu. Nalimov, and M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations,” Theor. Math. Phys., 181, 1448–1458 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  28. C. M. Bender and T. Wu, “Anharmonic oscillator,” Phys. Rev., 184, 1231–1260 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. G. Basuev and A. N. Vasil’ev, “Method of summing the perturbation series in scalar theories,” Theor. Math. Phys., 18, 129–135 (1974).

    Article  MathSciNet  Google Scholar 

  30. L. N. Lipatov, “Divergence of the perturbation-theory series and the quasi-classical theory,” Soviet JETP, 45, 216–223 (1977).

    ADS  MathSciNet  Google Scholar 

  31. D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, “Analytic continuation of the results of perturbation theory for the model gf4 to the region g > 1,” Theor. Math. Phys., 38, 9–16 (1979).

    Article  Google Scholar 

  32. D. I. Kazakov and D. V. Shirkov, “Asymptotic series of quantum field theory and their summation,” Fortsch. Phys., 28, 465–499 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  33. D. V. Shirkov, “Asymptotic series in quantum-field asymptotics,” Theor. Math. Phys., 40, 785–790 (1979).

    Article  Google Scholar 

  34. E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, “Perturbation theory at large order: I. The f2N interaction,” Phys. Rev. D, 15, 1544–1557 (1977).

    Article  ADS  Google Scholar 

  35. J. C. Le Guillou and J. Zinn-Justin, “Critical exponents from field theory,” Phys. Rev. B, 21, 3976–3998 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. E. Brezin, J. C. Le Guillou, J. Zinn-Justin, and B. G. Nickel, “Higher order contributions to critical exponents,” Phys. Lett. A, 44, 227–228 (1973).

    Article  ADS  Google Scholar 

  37. A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov, “Calculation of critical exponents by quantum field theory methods,” Soviet JETP, 521–525 (1979).

  38. A. A. Vladimirov, “On invariant regularization,” Theor. Math. Phys., 35, 534–538 (1978).

    Article  Google Scholar 

  39. A. A. Vladimirov, “Methods of calculating many-loop diagrams and renormalization-group analysis of the ?4 theory,” Theor. Math. Phys., 36, 732–737 (1978).

    Article  MathSciNet  Google Scholar 

  40. A. A. Vladimirov, “Method of calculating renormalization-group functions in the scheme of dimensional regularization,” Theor. Math. Phys., 43, 417–422 (1980).

    Article  Google Scholar 

  41. K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachev, “Five-loop calculations in the gf4 model and the critical index ?,” Phys.Lett. B, 99, 147–150 (1981); Erratum, 101, 457–458 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  42. K. G. Chetyrkin, S. G. Gorishny, S. A. Larin, and F. V. Tkachov, “Five-loop renormalization group calculations in the gf4 theory,” Phys. Lett. B, 132, 351–354 (1983)

    Article  ADS  Google Scholar 

  43. S. G. Gorishnii, S. A. Larin, F. V. Tkachev, and K. G. Chetyrkin, “Analytic calculation of five-loop approximations of renorm-group functions of the gf4(4) model in the MS scheme: Per diagram analysis [in Russian],” Preprint IYaI AN SSSR P-0453, Inst. Nucl. Res., Moscow (1986).

  44. D. I. Kazakov, “The method of uniqueness, a new powerful technique for multiloop calculations,” Phys. Lett. B, 133, 406–410 (1983)

    Article  ADS  Google Scholar 

  45. D. I. Kazakov, “Calculation of Feynman diagrams by the “Uniqueness” method,” Theor. Math. Phys., 58, 223–230 (1984).

    Article  Google Scholar 

  46. H. Kleinert, J. Neu, V. Shulte-Frohlinde, K. G. Chetyrkin, and S. A. Larin, “Five-loop renormalization group functions of O(n)-symmetric f4 theory and expansions of critical exponents up to 5,” Phys. Lett. B, 272, 39–44 (1991); Erratum, 319, 545 (1993).

    Article  ADS  Google Scholar 

  47. D. V. Batkovich, K. G. Chetyrkin, and M. V. Kompaniets, “Six loop analytical calculation of the field anomalous dimension and the critical exponent ? in O(n)-symmetric f4 model,” Nucl. Phys. B, 906, 147–167 (2016); arXiv:1601.01960v2 [hep-th] (2016).

    Article  ADS  MATH  Google Scholar 

  48. J. A. M. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025v2 (2000)

  49. J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga, “FORM version 4.0,” Comp. Phys. Commun., 184, 1453–1467 (2013).

    Article  ADS  MATH  Google Scholar 

  50. M. V. Komarova and M. Yu. Nalimov, “Asymptotic behavior of renormalization constants in higher orders of the perturbation expansion for the (4−ε)-dimensional regularized O(n)-symmetric ϕ 4 theory,” Theor. Math. Phys., 126, 339–353 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Antonov.

Additional information

This research is supported by St. Petersburg State University (Research Grant No. 11.38.185.2014).

The research of N. M. Lebedev is supported by the Russian Foundation for Basic Research (Grant No. 16-32-00086 mol_a) and the Dynasty Foundation.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 2, pp. 239–253, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, N.V., Kompaniets, M.V. & Lebedev, N.M. Critical behavior of the O(n) ϕ 4 model with an antisymmetric tensor order parameter: Three-loop approximation. Theor Math Phys 190, 204–216 (2017). https://doi.org/10.1134/S0040577917020039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917020039

Keywords

Navigation