Skip to main content
Log in

Differentiability of Mappings of the Sobolev Space Wn−11 with Conditions on the Distortion Function

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We define two scales of the mappings that depend on two real parameters p and q, with n−1 ≤ qp < ∞, as well as a weight function θ. The case q = p = n and θ ≡ 1 yields the well-known mappings with bounded distortion. The mappings of a two-index scale are applied to solve a series of problems of global analysis and applications. The main result of the article is the a.e. differentiability of mappings of two-index scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vodopyanov S. K., “Basics of the quasiconformal analysis of a two-index scale of spatial mappings,” Sib. Math. J., vol. 59, No. 5, 805–834 (2018).

    Article  Google Scholar 

  2. Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989).

    Book  MATH  Google Scholar 

  3. Stepanoff W., “Sur les conditions de l’existence de la differentiate totale,” Mat. Sb., vol. 32, 511–526 (1925).

    Google Scholar 

  4. Saks S., Theory of the Integral, Hafner Publishing Company, New York (1937).

    MATH  Google Scholar 

  5. Whitney H., “On totally differentiable and smooth functions,” Pacific J. Math., vol. 1, 143–159 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  6. Federer H., Geometric Measure Theory, Springer-Verlag, New York (1969).

    MATH  Google Scholar 

  7. Vodopyanov S. K., “Quasiconformal analysis of two-indexed scale of spatial mappings and its applications,” in: Conference on Complex Analysis and Its Applications: Int. Conf. Materials Dedicated to the 90th Anniversary of I. O. Mityuk, Krasnodar, June, 02–09, Prosveshcheniye-Yug, Krasnodar, 2018, 25–27.

    Google Scholar 

  8. Rickman S., Quasiregular Mappings, Springer-Verlag, Berlin etc. (1993).

    Book  MATH  Google Scholar 

  9. Heinonen Ju., Kilpelainen T., and Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford etc. (1993).

    MATH  Google Scholar 

  10. Baykin A. N. and Vodopyanov S. K., “Capacity estimates, Liouville’s Theorem, and singularity removal for mappings with bounded (P, Q)-distortion,” Sib. Math. J., vol. 56, No. 2, 237–261 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. Vodopyanov S. K., “Spaces of differential forms and maps with controlled distortion,” Izv. Math., vol. 74, No. 4, 663–689 (2010).

    Article  MathSciNet  Google Scholar 

  12. Vodopyanov S. K. and Ukhlov A. D., “Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups,” Sib. Math. J., vol. 39, No. 4, 665–682 (1998).

    Article  MathSciNet  Google Scholar 

  13. Vodopyanov S. K., “Composition operators on Sobolev spaces,” in: Complex Analysis and Dynamical Systems. II, Amer. Math. Soc., Providence, 2005, 327–342 (Contemp. Math.; vol. 382).

    Google Scholar 

  14. Ukhlov A. and Vodopyanov S. K., “Mappings with bounded (P,Q)-distortion on Carnot groups,” Bull. Sci. Mat., vol. 134, No. 6, 605–634 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. Csörnyei M., Hencl S., and Mal´y Y., “Homeomorphisms in the Sobolev space W1,n−1,” J. Reine Angew. Math., vol. 644, 221–235 (2010).

    MathSciNet  MATH  Google Scholar 

  16. Tengvall V., “Differentiability in the Sobolev space W1,n−1,” Calculus of Variations and Partial Differential Equations, vol. 51, No. 1–2, 381–399 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. Vodopyanov S. K., “Regularity of mappings inverse to Sobolev mappings,” Sb. Math., vol. 203, No. 10, 1383–1410 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. Haj–lasz P., “Change of variable formula under the minimal assumptions,” Colloq. Math., vol. 64, No. 1, 93–101 (1993).

    Article  MathSciNet  Google Scholar 

  19. Ukhlov A. and Vodopyanov S. K., “Mappings associated with weighted Sobolev spaces,” in: Complex Analysis and Dynamical Systems, II, Amer. Math. Soc., Providence, 2008, 369–382 (Contemp. Math.; vol. 455).

    Google Scholar 

  20. Poletskii E. A., “The modulus method for nonhomeomorphic quasiconformal mappings,” Math. USSR-Sb., vol. 12, No. 2, 260–270 (1970).

    Article  Google Scholar 

  21. Vodopyanov S. K., “On the regularity of the Poletskii function under weak analytic assumptions on the given mapping,” Dokl. Math., vol. 89, No. 2, 157–161 (2014).

    Article  MathSciNet  Google Scholar 

  22. Martio O., Rickman S., and Väisälä J., “Definitions for quasiregular mappings,” Ann. Acad. Sc. Fenn., vol. 448, 5–40 (1969).

    MathSciNet  MATH  Google Scholar 

  23. Mazya V. G., Sobolev Spaces, Springer-Verlag, Berlin (2011).

    Book  Google Scholar 

  24. Mazya V. G. and Havin V. P., “Non-linear potential theory,” Russian Math. Surveys, vol. 27, No. 6, 71–148 (1972).

    Article  Google Scholar 

  25. Radó N. and Reichelderfer P. V., Continuous Transformation in Analysis, Springer–Verlag, Berlin (1955). vol.

    Book  MATH  Google Scholar 

  26. Vodopyanov S. K. and Ukhlov A. D., “Set functions and its applications in the theory of Lebesgue and Sobolev spaces. I,” Siberian Adv. Math., vol. 14, No. 4, 78–125 (2004).

    MathSciNet  Google Scholar 

  27. Kruglikov V. I., “Capacity of condensers and spatial mappings quasiconformal in the mean,” Math. USSR-Sb., vol. 58, No. 1, 185–205 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  28. Koskela P. and Mal´y J., “Mappings of finite distortion: The zero set of the Jacobian,” J. Eur. Math. Soc., vol. 5, No. 2, 95–105 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  29. Vodopyanov S. K. and Ukhlov A. D., “Superposition operators in Sobolev spaces,” Russian Math. (Iz. VUZ), vol. 46, No. 10, 9–31 (2002).

    MathSciNet  MATH  Google Scholar 

  30. Salimov R. and Sevostyanov E., “ACL and differentiability of open discrete ring (p;Q)-mappings,” Mat. Stud., vol. 35, No. 1, 28–36 (2011).

    MathSciNet  MATH  Google Scholar 

  31. Reshetnyak Yu. G., “Sobolev-type classes of functions with values in a metric space,” Sib. Math. J., vol. 38, No. 3, 567–582 (1997).

    Article  Google Scholar 

  32. Troyanov M. and Vodopyanov S. K., “Liouville type theorems for mappings with bounded (co)-distortion,” Ann. Inst. Fourier (Grenoble), vol. 52, No. 6, 1753–1784 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Vodopyanov.

Additional information

Original Russian Text © 2018 Vodopyanov S.K.

__________

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, vol. 59, no. 6, pp. 1240–1267, November–December, 2018; DOI: 10.17377/smzh.2018.59.603.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodopyanov, S.K. Differentiability of Mappings of the Sobolev Space Wn−11 with Conditions on the Distortion Function. Sib Math J 59, 983–1005 (2018). https://doi.org/10.1134/S0037446618060034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446618060034

Keywords

Navigation