Skip to main content
Log in

On solvability of a periodic problem for a nonlinear telegraph equation

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The time-periodic problem is studied for a nonlinear telegraph equation with the Dirichlet–Poincaré boundary conditions. The questions are considered of existence and smoothness of solutions to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rabinowitz P., “Periodic solutions of nonlinear hyperbolic partial differential equations,” Comm. Pure Appl. Math., 20, No. 1, 145–205 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  2. Lions J.-L., Some Methods for Solving Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  3. Brezis H. and Nirenberg L., “Characterizations of the ranges of some nonlinear operators and applications to boundary value problems,” Ann. Scuola Norm. Sup. Pisa, 5, No. 2, 225–325 (1978).

    MathSciNet  MATH  Google Scholar 

  4. Nirenberg L., “Variational and topological methods in nonlinear problems,” Bull. Amer. Math. Soc., 4, No. 3, 267–302 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  5. Vejvoda O., Herrmann L., and Lovicar V., Partial Differential Equations: Time-Periodic Solutions, Sijthoff Noordoff, Maryland; Bockville (1981).

    Google Scholar 

  6. Brezis H., “Periodic solutions of nonlinear vibrating string and duality principles,” Bull. Amer. Math. Soc., 8, No. 3, 409–426 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. Rabinowitz P., “Large amplitude time periodic solutions of a semilinear wave equation,” Comm. Pure Appl. Math., 37, No. 2, 189–206 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl E., “On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term,” Chechosl. Math. J., 38, No. 1, 78–87 (1988).

    MathSciNet  MATH  Google Scholar 

  9. Plotnikov P. I., “Existence of a countable set of periodic solutions of the problem of forced oscillations for a weakly nonlinear wave equation,” Math. USSR-Sb., 64, No. 2, 543–556 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. Mustonen V. and Pohozaev S. I., “On the nonexistence of periodic radial solutions for semilinear wave equations in unbounded domain,” Differ. Integral Equ., 11, No. 1, 133–145 (1998).

    MathSciNet  MATH  Google Scholar 

  11. Kiguradze T., “On periodic in the plane solutions of nonlinear hyperbolic equations,” Nonlinear Anal. Ser. A: Theory Methods, 39, No. 2, 173–185 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. Kiguradze T., “On bounded and time-periodic solutions of nonlinear wave equations,” J. Math. Anal. Appl., 259, No. 1, 253–276 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. Mitidieri E. and Pokhozhaev S. I., “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities,” Proc. Steklov Inst. Math., 234, 1–362 (2001).

    MathSciNet  MATH  Google Scholar 

  14. Rudakov I. A., “Periodic solutions of a quasilinear wave equation with variable coefficients,” Math. USSR-Sb., 198, No. 7, 993–1009 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kondratev V. A. and Rudakov I. A., “Periodic solutions of a quasilinear wave equation,” Math. Notes, 85, No. 1, 34–50 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. Pava J. A., Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, Amer. Math. Soc., Providence (2009) (Amer. Math. Soc. Math. Surv. Monogr.; V. 156).

    Google Scholar 

  17. Tikhonov A. N. and Samarskii A. A., Equations of Mathematical Physics, Pergamon Press, Oxford etc. (1963).

    MATH  Google Scholar 

  18. Bitsadze A. V., Equations of Mathematical Physics, Mir, Moscow (1980).

    MATH  Google Scholar 

  19. Kharibegashvili S. and Midodashvili B., “Solvability of nonlocal problems for semilinear one-dimensional wave equations,” Electron. J. Differ. Equ., 28, 1–16 (2012).

    MathSciNet  MATH  Google Scholar 

  20. Kharibegashvili S. S. and Dzhokhadze O. M., “Second Darboux problem for the wave equation with a power-law nonlinearity,” Differ. Equ., 49, No. 12, 1577–1595 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin etc. (1983).

    Book  MATH  Google Scholar 

  22. Narasimhan R., Analysis on Real and Complex Manifolds, Elsevier, Amsterdam (1968).

    Google Scholar 

  23. Trenogin V. A., Functional Analysis [in Russian], Nauka, Moscow (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kharibegashvili.

Additional information

Original Russian Text Copyright © 2016 Kharibegashvili S.S. and Dzhokhadze O.M.

Tbilisi. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 57, No. 4, pp. 940–950, July–August, 2016; DOI: 10.17377/smzh.2016.57.415. Original article submitted March 23, 2015. Revision submitted March 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharibegashvili, S.S., Dzhokhadze, O.M. On solvability of a periodic problem for a nonlinear telegraph equation. Sib Math J 57, 735–743 (2016). https://doi.org/10.1134/S0037446616040157

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446616040157

Keywords

Navigation