Skip to main content
Log in

Method for Estimating the Internal Gas Pressure in the Pores of a Model Spherical Sample

  • APPLIED PROBLEMS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—An analytical equation for the determination of the internal gas pressure in a pore is proposed. The equation is based on the solution of the problem of the theory of elasticity for the deformation of a spherical cavity situated at the center of a hollow sphere. This equation can be useful for the evaluation of the properties and structures of the products made by powder metallurgy methods and using additive technologies, as well as for the improvement of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. I. Rudskoi and A. A. Popovich, Functional Gradient Materials and Additive Technologies for Their Fabrication (Politekh-Press, St. Petersburg, 2022).

    Google Scholar 

  2. T. A. Jibowu, “Review on nanoporous metals,” Frontiers Nanosci. Nanotech. 2 (4), 165–168 (2016).

    Article  Google Scholar 

  3. C. Basgul, T. Yu, D. W. MacDonald, R. Siskey, M. Marcolongo, and S. M. Kurtz, “Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages?” J. Mech. Behavior Biomed. Mater. 102, 103455 (2020).

    Article  CAS  Google Scholar 

  4. J. Li, X. Cui, G. J. Hooper, K. S. Lim, and T. B. F. Woodfield, “Rational design, biofunctionalization, and biological performance of hybrid additive manufactured titanium implants for orthopedic applications: a review,” J. Mech. Behavior Biomed. Mater. 105, 103671 (2020).

    Article  CAS  Google Scholar 

  5. S. D. Luo, B. Liu, J. Tian, and M. Qian, “Sintering of titanium in argon and vacuum: pore evolution and mechanical properties,” Int. J. Refractory Metals Hard Mater. 90, 105226 (2020).

    Article  CAS  Google Scholar 

  6. A. B. Kale, B.-K. Kim, D.-I. Kim, E. G. Castle, M. Reece, and Sh.-H. Choi, “An investigation of the corrosion behavior of 316L stainless steel fabricated by SLM and SPS techniques,” Mater. Charact. 163, 110204 (2020).

    Article  CAS  Google Scholar 

  7. A. Bandyopadhyay, F. Espana, V. K. Balla, S. Bose, Y. Ohgami, and N. M. Davies, “Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants,” Acta Biomater. 6 (4), 1640–1648 (2010).

    Article  CAS  Google Scholar 

  8. M. S. Egorov, M. S. Krasilo, and M. Yu. Dedov, “Mechanical properties of sintered materials. The influence of porosity on the plasticity of powder alloys,” Fundament. Osnovy Mekhan., No. 3, 143–149 (2018).

  9. O. V. Puchka and S. S. Vaisera, “To the problem of enhancing strength of porous materials,” in Science Intensive Technologies and Innovations: Proceedings of International Scientific Practical Conference (BelGTU, Belgorod, 2016), pp. 332–337.

  10. D. Bajare, J. Kazjonovs, and A. Korjakins, “Lightweight concrete with aggregates made by using industrial waste,” J. Sustain. Arch. Civil Eng. 4 (5), 67–73 (2013).

    Google Scholar 

  11. A. Pavlenko, H. Koshlak, A. Cheilytko, and M. Nosov, “Study of the formation of gas-vapor in the liquid mixture,” East.-Europ. J. Enterpr. Technol. 4(5 (82)), 58–65 (2016).

    Google Scholar 

  12. T. Ronneberg, C. M. Davies, and P. A. Hooper, “Revealing relationships between porosity, microstructure, and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment,” Mater. Design 189, 108481 (2020).

    Article  CAS  Google Scholar 

  13. O. Lopez-Pamies, P. P. Castaneda, and M. I. Idiart, “Effects of internal pore pressure on closed-cell elastomeric foams,” Int. J. Solids Struct. 49 (19–20), 2793–2798 (2012).

  14. J. Aboudi, S. Arnold, and B. Bednarcyk, Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach (Elsevier, 2012).

    Google Scholar 

  15. E. M. Morozov and M. I. Alymov, “Breaking pressure in microdefects of consolidated materials,” Dokl. Ross. Akad. Nauk. Khim. Nauki Mater. 501 (1), 56–58 (2021).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Theory of Elasticity (Nauka, Moscow, 1987).

    Google Scholar 

  17. A. V. Bobylev, Mechanical and Technological Properties of Metals (Metallurgiya, Moscow, 1987).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-19-00126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Alymov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alymov, M.I., Averin, S.I. & Petrov, E.V. Method for Estimating the Internal Gas Pressure in the Pores of a Model Spherical Sample. Russ. Metall. 2023, 522–525 (2023). https://doi.org/10.1134/S0036029523040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523040043

Navigation