Skip to main content
Log in

Evolution of the Structure of Rail Steel during Compression

  • STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The evolution of the structure and defect substructure of rail steel during uniaxial compression to a reduction of 50% is studied. The strain hardening is found to have a multistage character and to be accompanied by fragmentation of pearlite grains, which increases with the strain. An increase in the strain is accompanied by a decrease in the scalar and excess dislocation densities. Cementite plates are found to undergo destruction via their dissolution and cutting by mobile dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Yuriev, Yu. F. Ivanov, V. E. Gromov, Yu. A. Rubannikova, M. D. Starostenkov, and P. Y. Tabakov, Structure and Properties of Lengthy Rails after Extreme Long-Term Operation (Materials Research Forum LLC, Millersville, 2021).

  2. Y. Wang, Y. Tomota, S. Harjo, W. Gong, and T. Ohmuraa, “In- situ neutron diffraction during tension-compression cyclic deformation of a pearlite steel,” Mater. Sci. Eng., A 676, 522–530 (2016).

    Article  CAS  Google Scholar 

  3. R. Pan, R. Ren, C. Chen, and X. Zhao, “Formation of nanocrystalline structure in pearlitic steels by dry sliding wear,” Mater. Charact. 132, 397–404 (2017).

    Article  CAS  Google Scholar 

  4. M. W. Kapp, A. Hohenwarter, S. Wurster, B. Yang, and R. Pippan, “Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel,” Acta Mater. 106, 239–248 (2016).

    Article  CAS  Google Scholar 

  5. D. Raabe and R. Kumar, “Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling,” Scr. Materialia. 66, 634–637 (2012).

    Article  Google Scholar 

  6. M. K. Skakov, G. K. Uazyrkhanova, N. A. Popova, and M. Scheffler, “Influence of heat treatment and deformation on the phase-structural state of steel 30CrMnSiA,” Key Eng. Mater. 531532, 13–17 (2013).

  7. J. Zrnik, S. Dobatkin, G. Raab, M. Fujda, and L. Kraus, “Ultrafine grain structure development in steel with different initial structure by severe plastic deformation,” Revista Materia 15 (2), 240–246 (2010).

    Article  Google Scholar 

  8. T. Takahashi, I. Ochiai, H. Tashiro, S. Ohashi, S. Nishida, and T. Tarui, “Strengthening of steel wire for tire cord,” Nippon Steel Tech. Report 64, 45–49 (1995).

    Google Scholar 

  9. Y. Zhao, Y. Tan, X. Ji, Z. Xiang, and S. Xiang, “In situ study of cementite deformation and its fracture mechanism in pearlitic steels,” Mater. Sci. Eng., A 731, 93–101 (2018).

    Article  CAS  Google Scholar 

  10. H. Yahyaoui, H. Sidhom, C. Braham, and A. Bacz-manski, “Effect of interlamellar spacing on the elastoplastic behavior of C70 pearlitic steel: experimental results and self-consistent modeling,” Mater. Design 55, 888–897 (2014).

    Article  CAS  Google Scholar 

  11. M. Ekh, N. Larijani, E. Dartfeldt, M. Kapp, and R. Pippan, “Prediction of the mechanical behaviour of pearlitic steel based on microcompression tests, micromechanical models and homogenization approaches,” Eur. J. Mech.: A. Solids 67, 272–279 (2018).

    Article  Google Scholar 

  12. Y. J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, “Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite,” Acta Mater. 59, 3965–3977 (2011).

    Article  CAS  Google Scholar 

  13. H. Yahyaoui, H. Sidhom, C. Braham, and A. Bacz-manski, “Effect of interlamellar spacing on the elastoplastic behavior of C70 pearlitic steel: experimental results and self-consistent modeling,” Mater. Design 55, 888–897 (2014).

    Article  CAS  Google Scholar 

  14. F. R. Egerton, Physical Principles of Electron Microscopy (Springer, Basel, 2016).

    Book  Google Scholar 

  15. C. S. S. R. Kumar, Transmission Electron Microscopy. Characterization of Nanomaterials (Springer, New York, 2014).

    Book  Google Scholar 

  16. C. B. Carter and D. B. Williams, Transmission Electron Microscopy (Springer, Berlin, 2016).

    Book  Google Scholar 

  17. P. Hirsch, A. Howie, R. Nicholson, D. Pashley, and M. Whelan, Electron Microscopy of Thin Crystals (Plenum, New York, 1967).

    Google Scholar 

  18. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, and E. V. Kozlov, “Crystal lattice rotation and the stages of plastic deformation,” in Experimental Study and Theoretical Description of Disclinations (FTI, Leningrad, 1984), pp. 161–164.

    Google Scholar 

  19. U. F. Kocks and H. Mesking, “Physics and phenomenology of strain hardening: the FCC case,” Prog. Mater. Sci. 48, 171–279 (2003).

    Article  CAS  Google Scholar 

  20. Yu. N. Podrezov and S. A. Firstov, “Two approaches to an analysis of stress–strain curves,” Fiz. Tekh. Vys. Davl. 16 (4), 37–48 (2006).

    CAS  Google Scholar 

  21. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, and I. D. Gornaya, Strain Hardening and Fracture of Polycrystalline Materials (Naukova Dumka, Kiev, 1989).

    Google Scholar 

  22. V. N. Gridnev and V. G. Gavrilyuk, “Decomposition of cementite during plastic deformation,” Metallofiz. 4 (3), 74–87 (1982).

    CAS  Google Scholar 

  23. E. V. Kozlov, N. A. Popova, and N. A. Koneva, “Scalar dislocation density in fragments with different types of substructure,” Pis’ma Mater. 1, 15–18 (2011).

    Google Scholar 

  24. L. M. Utevskii, Diffraction Electron Microscopy in Physical Metallurgy (Metallurgiya, Moscow, 1973).

    Google Scholar 

  25. Yu. F. Ivanov, V. E. Gromov, and E. N. Nikitina, Bainite Constructional Steel: Structure and Properties (CISP, Cambridge, 2016).

    Google Scholar 

  26. Yu. F. Ivanov, E. V. Kornet, E. V. Kozlov, and V. E. Gromov, Hardened Structural Steel: Structure and Hardening Mechanisms (Izd. SibGIU, Novokuznetsk, 2010).

Download references

ACKNOWLEDGMENTS

We thank E.V. Polevoi for providing the rail steel specimens and N.A. Popova for helpful discussions.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-32-60001) and a scholarship of the President of the Russian Federation for young scientists and postgraduates engaged in promising research and development in priority areas of modernization of the Russian economy (project no. SP-4517.2021.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gromov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Gromov, V.E., Aksenova, K.V. et al. Evolution of the Structure of Rail Steel during Compression. Russ. Metall. 2022, 1192–1197 (2022). https://doi.org/10.1134/S0036029522100354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522100354

Navigation