Skip to main content
Log in

Deformation Processes at the Surface of a Nickel Alloy Subjected to Nanosecond Laser Pulses

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The effects on the surface of a nickel superalloy that are caused by the action of pulsed radiation from an Nd:YAG laser with a wavelength in the ultraviolet range (0.355 μm) and a pulse duration of 10 ns are studied. The surface layer is found to rise in a subthreshold irradiation regime. Traces of high-temperature plastic deformation via grain-boundary sliding and crystallographic slip are detected in the spot zone. The joints of nickel alloy samples with preliminary laser treatment are subjected to diffusion welding and mechanical tests; as a result, a noticeable improvement in the weld quality as compared to untreated samples is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. S. Oryshchenko, G. P. Karzov, A. S. Kudryavtsev, Yu. M. Trapeznikov, D. A. Artem’eva, and K. A. Okhapkin, “Nickel-based superalloy,” RF Patent 2543587, 2015.

  2. A. L. Kashtanov, S. N. Petrov, A. S. Kudryavtsev, K. A. Okhapkin, and D. A. Gruzdev, “Analysis of the causes of crack formation during hot plastic deformation of a KhN55MVTs-ID alloy,” Vopr. Materialoved., No. 4 (84), 17–23 (2015).

  3. A. K. Nikolaev and S. A. Kostin, Copper and High-Temperature Copper Alloys: Encyclopedia. Terminology. Words. Fundamental Handbook (DPK Press, Moscow, 2012).

    Google Scholar 

  4. A. V. Lyushinskii, Diffusion Welding of Unlike Materials (Akademiya, Moscow, 2006).

    Google Scholar 

  5. Yu. V. Khomich and V. A. Yamshchikov, “The effect of preliminary laser surface treatment on the mechanical properties of a solid-phase compound of an iron–nickel alloy in diffusion welding,” Adv. Mater. 6, 61–71 (2019).

    Article  Google Scholar 

  6. Yu. A. Vashukov, S. F. Demichev, V. D. Elenev, T. V. Malinskii, S. I. Mikolutskii, Yu. V. Khomich, and V. A. Yamshchikov, “Laser surface treatment of metallic alloys for diffusion welding,” Prikl. Fiz., No. 1, 82–87 (2019).

  7. R. E. Rovinskii, V. E. Rogalin, V. M. Rozenberg, and M. D. Teplitskii, “Changing the structure of a copper–chromium alloy irradiated by a CO2 laser pulse,” Fiz. Khim. Obrab. Mater., No. 3, 7–11 (1980).

  8. M. E. Gurevich, L. N. Larikov, V. F. Mazanko, A. E. Pogorelov, and V. M. Fal’chenko, “Influence of multiple laser action on the mass transfer in iron,” Metallofiz. B 73, 80–83 (1978).

    Google Scholar 

  9. R. Le Harzic, D. Dorr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Formation of periodic nanoripples on silicon and germanium induced by femtosecond laser pulses,” Phys. Procedia 12, 29–36 (2011).

    Article  CAS  Google Scholar 

  10. S. I. Ashitkov, S. A. Romashevskii, P. S. Komarov, A. A. Burmistrov, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Formation of nanostructures under femtosecond laser ablation of metals,” Quant. Electron. 45 (6), 547–550 (2015).

    Article  CAS  Google Scholar 

  11. E. V. Struleva, P. S. Komarov, and S. I. Ashitkov, “Thermomechanical ablation of titanium under femtosecond laser action,” Teplofiz. Vys. Temp. 57 (4), 529–533 (2019).

    Google Scholar 

  12. D. V. Ganin, S. I. Mikolutskiy, V. N. Tokarev, V. Yu. Khomich, V. A. Shmakov, and V. A. Yamshchikov, “Formation of micron and submicron structures on a zirconium oxide surface exposed to nanosecond laser radiation,” Quant. Electron. 44 (4), 317–321 (2014).

    Article  Google Scholar 

  13. F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. C. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328 405–409 (2015).

    Article  CAS  Google Scholar 

  14. Yu. A. Zheleznov, T. V. Malinskiy, Yu. V. Khomich, and V. A. Yamshchikov, “The effect of a scanning nanosecond laser pulse beam on the microtopography of ceramic Al2O3 coatings,” Inorg. Mater.: Appl. Res. 9 (3), 460–463 (2018).

    Article  Google Scholar 

  15. V. Yu. Khomich and V. A. Shmakov, “Mechanisms and models of direct laser nanostructuring of materials,” Usp. Fiz. Nauk 185 (5), 489–499 (2015).

    Article  Google Scholar 

  16. Yu. A. Zheleznov, T. V. Malinskii, S. I. Mikolutskii, V. N. Tokarev, R. R. Khasaya, Yu. V. Khomich, and V. A. Yamshchikov, “Experimental setup for micro- and nanostructuring the surface of solids by laser radiation,” Prikl. Fiz., No. 3, 83–87 (2014).

  17. T. V. Malinskii, S. I. Mikolutskii, V. E. Rogalin, Yu. V. Khomich, V. A. Yamshchikov, I. A. Kaplunov, and A. I. Ivanova, “Plastic deformation of copper induced by a powerful ultraviolet nanosecond laser pulse,” Pis’ma Zh. Tekh. Fiz. 46 (16), 51–54 (2020).

    Google Scholar 

  18. Yu. Khomich, T. Malinskiy, V. Rogalin, I. Kaplunov, and A. Ivanova, “Features of microrelief formation during laser treatment of Cu–Cr–Zr alloy surface for diffusion welding,” IOP Conf. Ser.: Mater. Sci. Eng. 939, Art. 012035 (2020). https://doi.org/10.1088/1757-899X/939/1/012035

  19. V. N. Elkin, T. V. Malinskii, Yu. V. Khomich, and V. A. Yamshchikov, “Changes in the bronze surface topography under irradiation with scanning pulsed nanosecond laser radiation,” Fiz. Khim. Obrab. Mater., No. 1, 27–34 (2019).

  20. V. P. Veiko, Technological Lasers and Laser Radiation (St. Petersburg State University ITMO, St. Petersburg, 2007).

    Google Scholar 

  21. V. Ya. Panchenko, Laser Technologies of Material Processing: Modern Problems of Fundamental Research and Applied Development (Fizmatlit, Moscow, 2009).

    Google Scholar 

  22. V. N. Elkin, T. V. Malinskii, S. I. Mikolutskii, R. R. Khasaya, Yu. V. Khomich, and V. A. Yamshchikov, “Influence of irradiation by nanosecond laser pulses on the surface structure of metal alloys,” Fiz. Khim. Obrab. Mater., No. 6, 5–12 (2016).

  23. A. N. Chumakov, I. S. Nikonchuk, B. Gakovic, S. Petrovic, and M. Trtica, “Multipulse nanosecond laser modification of steel surface,” Phys. Scr. 162, Art. 014016 (2014).

    Article  Google Scholar 

  24. S. I. Mikolutskiy, R. R. Khasaya, Yu. V. Khomich, and V. A. Yamshchikov, “Formation of various types of nanostructures on germanium surface by nanosecond laser pulse,” J. Phys.: Conf. Ser. 987 Art. 012007 (2018).

    Google Scholar 

  25. R. R. Behera, M. R. Sankar, P. K. Baruah, A. K. Sharma, and A. Khare, “Experimental investigation of nanosecond-pulsed Nd:YAG laser beam micromachining on 304 stainless steel,” J. Micromach. 1 (1), 62–75 (2018).

    Google Scholar 

  26. O. A. Kaybyshev, R. Ya. Lutfullin, and V. K. Berdin, “The effect of superplasticity and solid state weldability of the titanium alloy Ti–4.5Al–3Mo–1V,” Acta Metall. Mater. 42 (8), 2609–2615 (1994).

    Article  Google Scholar 

  27. A. M. Glezer, “On the nature of ultrahigh (megaplastic) deformation,” Izv. Ross. Akad. Nauk, Ser. Fiz. 71 (12), 1764–1772 (2007).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation in terms of state assignments no. 0057-2019-0005 and 0817-2020-0007 using the resources of the Center for Collective Use of Tver State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Rogalin.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheleznov, Y.A., Malinskii, T.V., Mikolutskii, S.I. et al. Deformation Processes at the Surface of a Nickel Alloy Subjected to Nanosecond Laser Pulses. Russ. Metall. 2021, 1233–1237 (2021). https://doi.org/10.1134/S0036029521100360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521100360

Keywords:

Navigation